guide:D0085fde68: Difference between revisions

From Stochiki
No edit summary
mNo edit summary
Line 33: Line 33:
</math></div>
</math></div>


==<span id="sec 1.3"></span>Operations with Functions.==
If <math>f</math> and <math>g</math> are two functions,
If <math>f</math> and <math>g</math> are two functions,
a new function <math>f(g)</math>,
a new function <math>f(g)</math>,
Line 153: Line 152:
We compute the function values
We compute the function values
corresponding to several different numbers <math>x</math> in
corresponding to several different numbers <math>x</math> in
[[#table 1.3 |Tables]] [[#table 1.4 |and]].
[[#table 1.3 |table]] and [[#table 1.4 |table]].
The resulting graphs of <math>f</math> and <math>g</math> are, respectively,
The resulting graphs of <math>f</math> and <math>g</math> are, respectively,
the straight line and parabola shown in [[#fig 1.18|Figure]](a).
the straight line and parabola shown in [[#fig 1.18|Figure]](a).
Line 161: Line 160:
It turns out that the graphs of <math>2f</math> and <math>f + g</math>
It turns out that the graphs of <math>2f</math> and <math>f + g</math>
are also a straight line and a parabola.
are also a straight line and a parabola.
They are drawn in [[#fig 1.18|Figure]](b).
They are drawn in [[#fig 1.18|Figure(b)]].
To see why the graph of <math>f + g</math> is a parabola,
To see why the graph of <math>f + g</math> is a parabola,
observe that  
observe that  
Line 180: Line 179:
except that it will be shifted two units to the right.
except that it will be shifted two units to the right.


\begin{table}
<span id="table 1.3"/>
 
<math display="block">
<math display="block">
\begin{array}{r|r|c}
\begin{array}{r|r|c}
Line 194: Line 192:
\end{array}
\end{array}
</math>
</math>
\caption{}
\label{table 1.3}
\end{table}
\begin{table}
\centering


<span id="table 1.4"/>
<math display="block">
<math display="block">
\begin{array}{r|c}
\begin{array}{r|c}
Line 213: Line 208:
\end{array}
\end{array}
</math>
</math>
\caption{}
 
\label{table 1.4}
 
\end{table}
 
Up to this point
 
we have used the letters
Up to this point we have used the letters
<math>f</math>, <math>g</math>, <math>h</math>, <math>F</math>, <math>G</math>, and <math>H</math>
<math>f</math>, <math>g</math>, <math>h</math>, <math>F</math>, <math>G</math>, and <math>H</math>
to denote functions,
to denote functions,and the letters <math>x</math>, <math>y</math>, <math>a</math>, <math>b</math>, and <math>c</math>
and the letters <math>x</math>, <math>y</math>, <math>a</math>, <math>b</math>, and <math>c</math>
to denote elements of sets---usually real numbers. However, the letters in the second set
to denote elements of sets---usually real numbers.
However, the letters in the second set
are sometimes also used as functions.
are sometimes also used as functions.
This occurs, for example,
This occurs, for example,
Line 308: Line 301:
On the one hand,
On the one hand,
we may consider the subset of <math>\R^2</math>, pictured in
we may consider the subset of <math>\R^2</math>, pictured in
[[#fig 1.19 |Fifure]],
[[#fig 1.19 |Figure]],
<div id="fig 1.19" class="d-flex justify-content-center">
<div id="fig 1.19" class="d-flex justify-content-center">
[[File:guide_c5467_scanfig1_19.png | 400px | thumb |  ]]
[[File:guide_c5467_scanfig1_19.png | 400px | thumb |  ]]
Line 410: Line 403:
and the identity function <math>x</math>.
and the identity function <math>x</math>.


\end{exercise}
 
==General references==
==General references==
{{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}}
{{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}}

Revision as of 22:28, 3 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

If [math]f[/math] and [math]g[/math] are two functions, a new function [math]f(g)[/math], called the composition of [math]g[/math] with [math]f[/math], is defined by

[[math]] (f(g))(x) = f(g(x)). [[/math]]

For example, if [math]f(x) = x^3 - 1[/math] and [math]g(x) = \frac{x + 1}{x - 1}[/math], then

[[math]] \begin{eqnarray} \label{eq1.3.1} (f(g))(x) &=& f(g(x)) = (g(x))^3 - 1 \\ &=& \biggl( \frac{x + 1}{x - 1}\biggr)^3 - 1 = \frac{2(3x^2 + 1)}{(x - 1)^3} . \end{eqnarray} [[/math]]

The composition of two functions is the function obtained by applying one after the other. If [math]f[/math] and [math]g[/math] are regarded as computing machines, then [math]f(g)[/math] is the composite machine constructed by feeding the output of [math]g[/math] into the input of [math]f[/math] as indicated in Figure.

In general it is not true that [math]f(g) = g(f)[/math]. In the above example we have

[[math]] \begin{eqnarray} \label{eq1.3.2} (g(f))(x) &=& g(f(x)) = \frac{f(x) + 1}{f(x) - 1} \\ &=& \frac{(x^3 - 1) + 1}{(x^3 - 1) - 1} = \frac{x^3}{x^3 - 2} , \end{eqnarray} [[/math]]

and the two functions are certainly not the same. In terms of ordered pairs the composition [math]f(g)[/math] of [math]g[/math] with [math]f[/math] is formally defined to be the set of all ordered pairs [math](a, c)[/math] for which there is an element [math]b[/math] such that [math]b = g(a)[/math] and [math]c = f(b)[/math]. If [math]f[/math] and [math]g[/math] are two real-valued functions, we can perform the usual arithmetic operations of addition, subtraction, multiplication, and division. Thus for the functions [math]f(x) = x^3 - 1[/math] and [math]g(x) = \frac{x + 1}{x - 1}[/math], we have

[[math]] \begin{eqnarray*} f(x) + g(x) &=& x^3 - 1 + \frac{x + 1}{x - 1} , \\ f(x) - g(x) &=& x^3 - 1 - \frac{x + 1}{x - 1} , \\ f(x)g(x) &=& (x^3 -1) \frac{x + 1}{x - 1} , \\ &=& (x^2 + x + 1)(x + 1) \provx{if $x \neq 1$}, \\ f(x)/g(x) &=& \frac{x^3 - 1}{\frac{x + 1}{x - 1}} \\ &=& \frac{(x^3 - 1)(x - 1)}{x + 1}. \end{eqnarray*} [[/math]]

Just as with the composition of two functions, each arithmetic operation provides a method of constructing a new function from the two given functions [math]f[/math] and [math]g[/math]. The natural notations for these new functions are [math]f + g[/math], [math]f - g[/math], [math]fg[/math], and [math]\frac{f}{g}[/math]. They are defined by the formulas

[[math]] \begin{eqnarray*} (f + g)(x) &=& f(x) + g(x), \\ (f - g)(x) &=& f(x) - g(x), \\ (fg)(x) &=& f(x)g(x), \\ {\frac{f}{g}}(x) &=& \frac{f(x)}{g(x)} \provx{if $g(x) \neq 0$}. \end{eqnarray*} [[/math]]

The product function [math]fg[/math] should not be confused with the composite function [math]f(g)[/math]. For example, if [math]f(x) = x^5[/math] and [math]g(x) = x^3[/math], then we have [math](fg)(x) = f(x)g(x) = {x^5} \cdot {x^3} = x^8[/math], whereas

[[math]] (f(g))(x) = f(g(x)) = (x^3)^5 = x^{15}. [[/math]]

We may also form the product [math]af[/math] of an arbitrary real number [math]a[/math] and real-valued function [math]f[/math]. The product function is defined by

[[math]] (af)(x)= af(x). [[/math]]

Example \label{exam 1.3.1} Let functions [math]f[/math] and [math]g[/math] be defined by [math]f(x) = x - 2[/math] and [math]g(x) = x^2 - 5x + 6[/math]. Draw the graphs of [math]f[/math], [math]g[/math], [math]2f[/math], and [math]f + g[/math]. We compute the function values corresponding to several different numbers [math]x[/math] in table and table. The resulting graphs of [math]f[/math] and [math]g[/math] are, respectively, the straight line and parabola shown in Figure(a).

It turns out that the graphs of [math]2f[/math] and [math]f + g[/math] are also a straight line and a parabola. They are drawn in Figure(b). To see why the graph of [math]f + g[/math] is a parabola, observe that

[[math]] \begin{eqnarray*} (f + g)(x) &=& f(x) + g(x) = (x - 2) + (x^2 - 5x + 6) = x^2 - 4x + 4 \\ &=& (x - 2)^2. \end{eqnarray*} [[/math]]

It follows that [math]f + g[/math] is very much like the function defined by [math]y = x^2[/math]. Instead of simply squaring a number, [math]f + g[/math] first subtracts [math]2[/math] and then squares. Its graph will be just like that of [math]y = x^2[/math] except that it will be shifted two units to the right.

[[math]] \begin{array}{r|r|c} \hline x & f(x) & 2f(x) \\ \hline 0 & -2 & -4 \\ 1 & -1 & -2 \\ 2 & 0 & 0 \\ 3 & 1 & 2 \\ \hline \end{array} [[/math]]


[[math]] \begin{array}{r|c} \hline x & g(x) \\ \hline 0 & 6 \\ 5 & 6 \\ \frac{5}{2} & -\frac{1}{4} \\ 1 & 2 \\ 4 & 2 \\ \hline \end{array} [[/math]]



Up to this point we have used the letters [math]f[/math], [math]g[/math], [math]h[/math], [math]F[/math], [math]G[/math], and [math]H[/math] to denote functions,and the letters [math]x[/math], [math]y[/math], [math]a[/math], [math]b[/math], and [math]c[/math] to denote elements of sets---usually real numbers. However, the letters in the second set are sometimes also used as functions. This occurs, for example, when we speak of [math]x[/math] as a real variable. As such, it not only is the name of a real number but also can take on many different values: [math]5[/math], or [math]-7[/math], or [math]\pi[/math], or \ldots. Thus the variable [math]x[/math] is a function. Specifically, it is the very simple function that assigns the value [math]5[/math] to the number [math]5[/math], the value [math]-7[/math] to the number [math]-7[/math], the value [math]\pi[/math] to [math]\pi[/math], \ldots. For every real number [math]a[/math], we have

[[math]] x(a) = a. [[/math]]

This function is called the identity function. Suppose, for example, that [math]s[/math] is used to denote the distance that a stone falling freely in space has fallen. The value of [math]s[/math] increases as the stone falls and depends on the length of time [math]t[/math] that it has fallen according to the equation [math]s= {\frac{1}{2}}g{t^2}[/math], where [math]g[/math] is the constant gravitational acceleration. (This formula assumes no air resistance, that the stone was at rest at time [math]t = 0[/math], and that distance is measured from the starting point.) Thus [math]s[/math] has the value [math]{\frac{9}{2}}g[/math] if [math]t[/math] has the value [math]3[/math], and, more generally, the value [math]{\frac{1}{2}}g{a^2}[/math] when [math]t[/math] has the value [math]a[/math]. If we consider [math]t[/math] to be another name for the identity function, then [math]s[/math] may be regarded as the function whose value is

[[math]] s(a) = {\frac{1}{2}}{g{a^2}} = {\frac{1}{2}}{g(t(a))^2} [[/math]]

for every real number [math]a[/math]. The original equation [math]s = {\frac{1}{2}}g{t^2}[/math] then states the relation between the two functions [math]s[/math] and [math]t[/math]. The fact that [math]s[/math] and [math]t[/math] take on different values is also expressed by referring to them as variables. A variable is simply a name of a function. In our example [math]s[/math] is called a dependent variable, and [math]t[/math] an independent variable, because the values of [math]s[/math] depend on those of [math]t[/math] according to [math]s = {\frac{1}{2}}g{t^2}[/math]. Thus an independent variable is a name for the identity function, and a dependent variable is one that is not independent. A real variable is therefore a name of a real-valued function. Since the arithmetic operations of addition, subtraction, multiplication, and division have been defined for real-valued functions, they are automatically defined for real variables. We shall generally use the letter [math]x[/math] to denote an independent variable. This raises the question: How does one tell whether an occurrence of [math]x[/math] denotes a real number or the identity function? The answer is that the notation alone does not tell, but the context and the reader's understanding should. However, a more practical reply is that it doesn't really make much difference. We may regard [math]f(x)[/math] as either the value of the function [math]f[/math] at the number [math]x[/math] or as the composition of [math]f[/math] with the variable [math]x[/math]. If [math]x[/math] is an independent variable, the function [math]f(x)[/math] is then the same thing as [math]f[/math].

Example \label{exam 1.3.2} The conventions that we have adopted concerning the use of variables give our notations a flexibility that is both consistent and extremely useful. Consider, for example, the equation

[[math]] y= 2x^2 - 3x. [[/math]]
On the one hand, we may consider the subset of [math]\R^2[/math], pictured in Figure,

that consists of all ordered pairs [math](x, y)[/math] such that [math]y = 2x^2 - 3x[/math]. This subset is a function [math]f[/math] whose value at an arbitrary real number [math]x[/math] is the real number [math]f(x) = 2x^2 - 3x[/math]. Alternatively, we may regard [math]x[/math] as an independent variable, i.e., the identity function. The composition of [math]f[/math] with [math]x[/math] is then the function [math]f(x) = 2x^2 - 3x[/math], whose value at [math]2[/math], for instance, is

[[math]] (f(x))(2) = f(x(2)) = f(2) = 8 - 6 = 2. [[/math]]
A third interpretation is that [math]y[/math] is a dependent variable that depends on [math]x[/math] according to the equation [math]y = 2x^2 - 3x[/math]. That is, [math]y[/math] is the name of the function [math]2x^2 - 3x[/math].

Example \label{exam 1.3.3} Let [math]F[/math] be the function defined by [math]F(x) = x^3 + x + 1[/math]. If [math]u = \sqrt{x - 2}[/math], then

[[math]] \begin{eqnarray*} F(u) &=& u^3 + u + 1 \\ &=& (x - 2)^{3/2} + (x - 2)^{1/2} + 1. \end{eqnarray*} [[/math]]
If we denote the function [math]F(x)[/math] by [math]w[/math], then

[[math]] u + w = \sqrt{x - 2} + x^3 + x + 1, [[/math]]

[[math]] uw = (x - 2)^{1/2} (x^3 + x + 1). [[/math]]
On the other hand, we may let [math]G[/math] be the function defined by [math]G(x) = \sqrt{x - 2}[/math] for every real number [math]x \geq 2[/math]. Then [math]G + F[/math] and [math]GF[/math] are the functions defined, respectively, by

[[math]] \begin{eqnarray*} (G + F)(x) &=& G(x) + F(x) \\ &=& \sqrt{x - 2} + x^3 + x + 1, \\ (GF)(x) &=& G(x)F(x) \\ &=& (x - 2)^{1/2} (x^3 + x + 1). \end{eqnarray*} [[/math]]


To say that [math]a[/math] is a real constant means first that it is a real number. Second, it may or may not matter which real number [math]a[/math] is, but it is fixed for the duration of the discussion in which it occurs. Similarly, a constant function is one which takes on just one value; i.e., its range consists of a single element. For example, consider the constant function [math]f[/math] defined by

[[math]] f(x) = 5, \;\;\; - \infty \lt x \lt \infty. [[/math]]
The graph of [math]f[/math] is the straight line parallel to the [math]x[/math]-axis that intersects the [math]y[/math]-axis in the point (0, 5); see Figure.

We shall commonly use lower-case letters at the beginning of the alphabet, e.g., [math]a[/math], [math]b[/math], [math]c[/math],..., to denote both constants and constant functions. Example \label{exam 1.3.4} Consider the function [math]ax + b[/math], where [math]a[/math] and [math]b[/math] are constants, [math]a \neq 0[/math], and [math]x[/math] is an independent variable. The graph of this function is a straight line that cuts the [math]y[/math]-axis at [math]b[/math] and the [math]x[/math]-axis at [math]-\frac{b}{a}[/math]. It is drawn in Figure.

This function is the sum of the constant function [math]b[/math] and the function which is the product of the constant function [math]a[/math] and the identity function [math]x[/math].


General references

Doyle, Peter G. (2008). "Crowell and Slesnick's Calculus with Analytic Geometry" (PDF). Retrieved Oct 29, 2024.