guide:D0085fde68: Difference between revisions

From Stochiki
No edit summary
 
mNo edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<div class="d-none"><math>
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
</math></div>


If <math>f</math> and <math>g</math> are two functions,
a new function <math>f(g)</math>,
called the '''composition''' of <math>g</math> with <math>f</math>,
is defined by
<math display="block">
(f(g))(x) = f(g(x)).
</math>
For example,
if <math>f(x) = x^3 - 1</math> and <math>g(x) = \frac{x + 1}{x - 1}</math>,
then
<span id{{=}}"eq1.3.1"/>
<math display="block">
\begin{eqnarray}
\label{eq1.3.1}
(f(g))(x)
&=& f(g(x))
= (g(x))^3 - 1 \\
&=& \biggl( \frac{x + 1}{x - 1}\biggr)^3 - 1
= \frac{2(3x^2 + 1)}{(x - 1)^3} .
\end{eqnarray}
</math>
The composition of two functions
is the function obtained by applying one after the other.
If <math>f</math> and <math>g</math> are regarded as computing machines,
then <math>f(g)</math> is the composite machine
constructed by feeding the output of <math>g</math>
into the input of <math>f</math>
as indicated in [[#fig 1.17|Figure]].
<div id="fig 1.17" class="d-flex justify-content-center">
[[File:guide_c5467_scanfig1_17.png | 400px | thumb |  ]]
</div>
In general it is not true that <math>f(g) = g(f)</math>.
In the above example we have
<span id{{=}}"eq1.3.2"/>
<math display="block">
\begin{eqnarray}
\label{eq1.3.2}
(g(f))(x)
&=& g(f(x))
= \frac{f(x) + 1}{f(x) - 1} \\
&=& \frac{(x^3 - 1) + 1}{(x^3 - 1) - 1}
= \frac{x^3}{x^3 - 2} , 
\end{eqnarray}
</math>
and the two functions are certainly not the same.
In terms of ordered pairs the composition <math>f(g)</math> of <math>g</math> with <math>f</math>
is formally defined to be
the set of all ordered pairs <math>(a, c)</math>
for which there is an element <math>b</math>
such that <math>b = g(a)</math> and <math>c = f(b)</math>.
If <math>f</math> and <math>g</math> are two real-valued functions,
we can perform the usual arithmetic operations of
addition, subtraction, multiplication, and division.
Thus for the functions
<math>f(x) = x^3 - 1</math> and <math>g(x) = \frac{x + 1}{x - 1}</math>,
we have
<math display="block">
\begin{eqnarray*}
f(x) + g(x)
&=& x^3 - 1 + \frac{x + 1}{x - 1} ,    \\
f(x) - g(x)
&=& x^3 - 1 - \frac{x + 1}{x - 1} ,    \\
f(x)g(x)
&=& (x^3 -1) \frac{x + 1}{x - 1} ,      \\
&=& (x^2 + x + 1)(x + 1)  \provx{if $x \neq 1$},  \\
f(x)/g(x)
&=& \frac{x^3 - 1}{\frac{x + 1}{x - 1}} \\
&=& \frac{(x^3 - 1)(x - 1)}{x + 1}.
\end{eqnarray*}
</math>
Just as with the composition of two functions,
each arithmetic operation
provides a method of constructing a new function
from the two given functions <math>f</math> and <math>g</math>.
The natural notations for these new functions are
<math>f + g</math>, <math>f - g</math>, <math>fg</math>, and <math>\frac{f}{g}</math>.
They are defined by the formulas
<math display="block">
\begin{eqnarray*}
(f + g)(x)
&=& f(x) + g(x), \\
(f - g)(x)
&=& f(x) - g(x),  \\
(fg)(x)
&=& f(x)g(x),    \\
{\frac{f}{g}}(x)
&=& \frac{f(x)}{g(x)} \provx{if $g(x) \neq 0$}.
\end{eqnarray*}
</math>
The product function <math>fg</math> should not be confused with
the composite function <math>f(g)</math>.
For example, if <math>f(x) = x^5</math> and <math>g(x) = x^3</math>,
then we have <math>(fg)(x) = f(x)g(x) = {x^5} \cdot {x^3} = x^8</math>,
whereas
<math display="block">
(f(g))(x) = f(g(x)) = (x^3)^5 = x^{15}.
</math>
We may also form the product <math>af</math> of an arbitrary real number <math>a</math>
and real-valued function <math>f</math>.
The product function is defined by
<math display="block">
(af)(x)= af(x).
</math>
<span id="exam 1.3.1"/>
'''Example'''
Let functions <math>f</math> and <math>g</math> be defined by
<math>f(x) = x - 2</math> and <math>g(x) = x^2 - 5x + 6</math>.
Draw the graphs of <math>f</math>, <math>g</math>, <math>2f</math>, and <math>f + g</math>.
We compute the function values
corresponding to several different numbers <math>x</math> in
[[#table 1.3 |table]] and [[#table 1.4 |table]].
The resulting graphs of <math>f</math> and <math>g</math> are, respectively,
the straight line and parabola shown in [[#fig 1.18|Figure]](a).
<div id="fig 1.18" class="d-flex justify-content-center">
[[File:guide_c5467_scanfig1_18.png | 400px | thumb |  ]]
</div>
It turns out that the graphs of <math>2f</math> and <math>f + g</math>
are also a straight line and a parabola.
They are drawn in [[#fig 1.18|Figure(b)]].
To see why the graph of <math>f + g</math> is a parabola,
observe that
<math display="block">
\begin{eqnarray*}
(f + g)(x)
&=& f(x) + g(x)
= (x - 2) + (x^2 - 5x + 6) = x^2 - 4x + 4 \\
&=& (x - 2)^2.
\end{eqnarray*}
</math>
It follows that <math>f + g</math> is very much like
the function defined by <math>y = x^2</math>.
Instead of simply squaring a number,
<math>f + g</math> first subtracts <math>2</math> and then squares.
Its graph will be just like that of <math>y = x^2</math>
except that it will be shifted two units to the right.
<span id="table 1.3"/>
<math display="block">
\begin{array}{r|r|c}
\hline
x  &  f(x)  &  2f(x)  \\
\hline
0  &  -2    &  -4    \\
1  &  -1    &  -2    \\
2  &  0    &  0    \\
3  &  1    &  2    \\
\hline
\end{array}
</math>
<span id="table 1.4"/>
<math display="block">
\begin{array}{r|c}
\hline
x              &  g(x)    \\
\hline
0              &  6        \\
5              &  6        \\
\frac{5}{2}    &  -\frac{1}{4}  \\
1              &  2        \\
4              &  2        \\
\hline
\end{array}
</math>
Up to this point we have used the letters
<math>f</math>, <math>g</math>, <math>h</math>, <math>F</math>, <math>G</math>, and <math>H</math>
to denote functions,and the letters <math>x</math>, <math>y</math>, <math>a</math>, <math>b</math>, and <math>c</math>
to denote elements of sets---usually real numbers. However, the letters in the second set
are sometimes also used as functions.
This occurs, for example,
when we speak of <math>x</math> as a real variable.
As such, it not only is the name of a real number
but also can take on many different values:
<math>5</math>, or <math>-7</math>, or <math>\pi</math>, or \ldots.
Thus the variable <math>x</math> is a function.
Specifically, it is the very simple function
that assigns the value <math>5</math> to the number <math>5</math>,
the value <math>-7</math> to the number <math>-7</math>,
the value <math>\pi</math> to <math>\pi</math>, \ldots.
For every real number <math>a</math>, we have
<math display="block">
x(a) = a.
</math>
This function is called the '''identity function'''.
Suppose, for example,
that <math>s</math> is used to denote the distance
that a stone falling freely in space has fallen.
The value of <math>s</math> increases as the stone falls
and depends on the length of time <math>t</math> that it has fallen
according to the equation
<math>s= {\frac{1}{2}}g{t^2}</math>,
where <math>g</math> is the constant gravitational acceleration.
(This formula assumes no air resistance,
that the stone was at rest at time <math>t = 0</math>,
and that distance is measured from the starting point.)
Thus <math>s</math> has the value <math>{\frac{9}{2}}g</math>
if <math>t</math> has the value <math>3</math>,
and, more generally,
the value <math>{\frac{1}{2}}g{a^2}</math>
when <math>t</math> has the value <math>a</math>.
If we consider <math>t</math> to be another name for the identity function,
then <math>s</math> may be regarded as the function whose value is
<math display="block">
s(a) = {\frac{1}{2}}{g{a^2}} = {\frac{1}{2}}{g(t(a))^2}
</math>
for every real number <math>a</math>.
The original equation <math>s = {\frac{1}{2}}g{t^2}</math> then states
the relation between the two functions <math>s</math> and <math>t</math>.
The fact that <math>s</math> and <math>t</math> take on different values
is also expressed by referring to them as variables.
A '''variable''' is simply a name of a function.
In our example <math>s</math> is called a dependent variable,
and <math>t</math> an independent variable,
because the values of <math>s</math> depend on those of <math>t</math>
according to <math>s = {\frac{1}{2}}g{t^2}</math>.
Thus an '''independent variable'''
is a name for the identity function,
and a '''dependent variable''' is one that is not independent.
A real variable is therefore a name of a real-valued function.
Since the arithmetic operations of
addition, subtraction, multiplication, and division
have been defined for real-valued functions,
they are automatically defined for real variables.
We shall generally use the letter <math>x</math>
to denote an independent variable.
This raises the question:
How does one tell whether an occurrence of <math>x</math>
denotes a real number or the identity function?
The answer is that the notation alone does not tell,
but the context and the reader's understanding should.
However, a more practical reply
is that it doesn't really make much difference.
We may regard <math>f(x)</math> as either
the value of the function <math>f</math> at the number <math>x</math>
or as the composition of <math>f</math> with the variable <math>x</math>.
If <math>x</math> is an independent variable,
the function  <math>f(x)</math> is then the same thing as <math>f</math>.
<span id="exam 1.3.2"/>
'''Example'''
The conventions that we have adopted
concerning the use of variables
give our notations a flexibility
that is both consistent and extremely useful.
Consider, for example, the equation
<math display="block">
y= 2x^2 - 3x.
</math>
On the one hand,
we may consider the subset of <math>\R^2</math>, pictured in
[[#fig 1.19 |Figure]],
<div id="fig 1.19" class="d-flex justify-content-center">
[[File:guide_c5467_scanfig1_19.png | 400px | thumb |  ]]
</div>
that consists of all ordered pairs <math>(x, y)</math> such that <math>y = 2x^2 - 3x</math>.
This subset is a function <math>f</math>
whose value at an arbitrary real number <math>x</math>
is the real number <math>f(x) = 2x^2 - 3x</math>.
Alternatively,
we may regard <math>x</math> as an independent variable,
i.e., the identity function.
The composition of <math>f</math> with <math>x</math> is then the
function <math>f(x) = 2x^2 - 3x</math>, whose value at <math>2</math>,
for instance, is
<math display="block">
(f(x))(2) = f(x(2)) = f(2) = 8 - 6 = 2.
</math>
A third interpretation
is that <math>y</math> is a dependent variable that depends on <math>x</math>
according to the equation <math>y = 2x^2 - 3x</math>.
That is, <math>y</math> is the name of the function <math>2x^2 - 3x</math>.
<span id="exam 1.3.3"/>
'''Example'''
Let <math>F</math> be the function defined by
<math>F(x) = x^3 + x + 1</math>. If <math>u = \sqrt{x - 2}</math>,
then
<math display="block">
\begin{eqnarray*}
F(u)
&=&  u^3 + u + 1  \\
&=&  (x - 2)^{3/2} + (x - 2)^{1/2} + 1.
\end{eqnarray*}
</math>
If we denote the function <math>F(x)</math> by <math>w</math>, then
<math display="block">
u + w =  \sqrt{x - 2} + x^3 + x + 1,
</math>
<math display="block">
uw = (x - 2)^{1/2} (x^3 + x + 1).
</math>
On the other hand,
we may let <math>G</math> be the function defined by
<math>G(x) = \sqrt{x - 2}</math>
for every real number <math>x \geq 2</math>.
Then <math>G + F</math> and <math>GF</math> are the functions defined, respectively, by
<math display="block">
\begin{eqnarray*}
(G + F)(x)
&=&  G(x) + F(x) \\
&=&  \sqrt{x - 2} + x^3 + x + 1, \\
(GF)(x)
&=& G(x)F(x) \\
&=&  (x - 2)^{1/2} (x^3 + x + 1).
\end{eqnarray*}
</math>
To say that <math>a</math> is a real '''constant'''
means first that it is a real number.
Second, it may or may not matter which real number <math>a</math> is,
but it is fixed for the duration of the discussion in which it occurs.
Similarly, a '''constant function''' is one which takes on just one value;
i.e., its range consists of a single element.
For example, consider the constant function <math>f</math> defined by
<math display="block">
f(x) = 5, \;\;\; - \infty  <  x  <  \infty.
</math>
The graph of <math>f</math> is the straight line parallel to the <math>x</math>-axis
that intersects the <math>y</math>-axis in the point (0, 5);
see [[#fig 1.20|Figure]].
<div id="fig 1.20" class="d-flex justify-content-center">
[[File:guide_c5467_scanfig1_20.png | 400px | thumb |  ]]
</div>
We shall commonly use lower-case letters
at the beginning of the alphabet,
e.g., <math>a</math>, <math>b</math>, <math>c</math>,...,
to denote both constants and constant functions.
<span id="exam 1.3.4"/>
'''Example'''
Consider the function <math>ax + b</math>,
where <math>a</math> and <math>b</math> are constants,
<math>a \neq 0</math>,
and <math>x</math> is an independent variable.
The graph of this function is a straight line
that cuts the <math>y</math>-axis at <math>b</math> and the <math>x</math>-axis at <math>-\frac{b}{a}</math>.
It is drawn in [[#fig 1.21|Figure]].
<div id="fig 1.21" class="d-flex justify-content-center">
[[File:guide_c5467_scanfig1_21.png | 400px | thumb |  ]]
</div>
This function is the sum of the constant function <math>b</math>
and the function which is the product of the constant function <math>a</math>
and the identity function <math>x</math>.
==General references==
{{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}}

Latest revision as of 22:29, 3 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

If [math]f[/math] and [math]g[/math] are two functions, a new function [math]f(g)[/math], called the composition of [math]g[/math] with [math]f[/math], is defined by

[[math]] (f(g))(x) = f(g(x)). [[/math]]

For example, if [math]f(x) = x^3 - 1[/math] and [math]g(x) = \frac{x + 1}{x - 1}[/math], then

[[math]] \begin{eqnarray} \label{eq1.3.1} (f(g))(x) &=& f(g(x)) = (g(x))^3 - 1 \\ &=& \biggl( \frac{x + 1}{x - 1}\biggr)^3 - 1 = \frac{2(3x^2 + 1)}{(x - 1)^3} . \end{eqnarray} [[/math]]

The composition of two functions is the function obtained by applying one after the other. If [math]f[/math] and [math]g[/math] are regarded as computing machines, then [math]f(g)[/math] is the composite machine constructed by feeding the output of [math]g[/math] into the input of [math]f[/math] as indicated in Figure.

In general it is not true that [math]f(g) = g(f)[/math]. In the above example we have

[[math]] \begin{eqnarray} \label{eq1.3.2} (g(f))(x) &=& g(f(x)) = \frac{f(x) + 1}{f(x) - 1} \\ &=& \frac{(x^3 - 1) + 1}{(x^3 - 1) - 1} = \frac{x^3}{x^3 - 2} , \end{eqnarray} [[/math]]

and the two functions are certainly not the same. In terms of ordered pairs the composition [math]f(g)[/math] of [math]g[/math] with [math]f[/math] is formally defined to be the set of all ordered pairs [math](a, c)[/math] for which there is an element [math]b[/math] such that [math]b = g(a)[/math] and [math]c = f(b)[/math]. If [math]f[/math] and [math]g[/math] are two real-valued functions, we can perform the usual arithmetic operations of addition, subtraction, multiplication, and division. Thus for the functions [math]f(x) = x^3 - 1[/math] and [math]g(x) = \frac{x + 1}{x - 1}[/math], we have

[[math]] \begin{eqnarray*} f(x) + g(x) &=& x^3 - 1 + \frac{x + 1}{x - 1} , \\ f(x) - g(x) &=& x^3 - 1 - \frac{x + 1}{x - 1} , \\ f(x)g(x) &=& (x^3 -1) \frac{x + 1}{x - 1} , \\ &=& (x^2 + x + 1)(x + 1) \provx{if $x \neq 1$}, \\ f(x)/g(x) &=& \frac{x^3 - 1}{\frac{x + 1}{x - 1}} \\ &=& \frac{(x^3 - 1)(x - 1)}{x + 1}. \end{eqnarray*} [[/math]]

Just as with the composition of two functions, each arithmetic operation provides a method of constructing a new function from the two given functions [math]f[/math] and [math]g[/math]. The natural notations for these new functions are [math]f + g[/math], [math]f - g[/math], [math]fg[/math], and [math]\frac{f}{g}[/math]. They are defined by the formulas

[[math]] \begin{eqnarray*} (f + g)(x) &=& f(x) + g(x), \\ (f - g)(x) &=& f(x) - g(x), \\ (fg)(x) &=& f(x)g(x), \\ {\frac{f}{g}}(x) &=& \frac{f(x)}{g(x)} \provx{if $g(x) \neq 0$}. \end{eqnarray*} [[/math]]

The product function [math]fg[/math] should not be confused with the composite function [math]f(g)[/math]. For example, if [math]f(x) = x^5[/math] and [math]g(x) = x^3[/math], then we have [math](fg)(x) = f(x)g(x) = {x^5} \cdot {x^3} = x^8[/math], whereas

[[math]] (f(g))(x) = f(g(x)) = (x^3)^5 = x^{15}. [[/math]]

We may also form the product [math]af[/math] of an arbitrary real number [math]a[/math] and real-valued function [math]f[/math]. The product function is defined by

[[math]] (af)(x)= af(x). [[/math]]

Example

Let functions [math]f[/math] and [math]g[/math] be defined by [math]f(x) = x - 2[/math] and [math]g(x) = x^2 - 5x + 6[/math]. Draw the graphs of [math]f[/math], [math]g[/math], [math]2f[/math], and [math]f + g[/math]. We compute the function values corresponding to several different numbers [math]x[/math] in table and table. The resulting graphs of [math]f[/math] and [math]g[/math] are, respectively, the straight line and parabola shown in Figure(a).

It turns out that the graphs of [math]2f[/math] and [math]f + g[/math] are also a straight line and a parabola. They are drawn in Figure(b). To see why the graph of [math]f + g[/math] is a parabola, observe that

[[math]] \begin{eqnarray*} (f + g)(x) &=& f(x) + g(x) = (x - 2) + (x^2 - 5x + 6) = x^2 - 4x + 4 \\ &=& (x - 2)^2. \end{eqnarray*} [[/math]]

It follows that [math]f + g[/math] is very much like the function defined by [math]y = x^2[/math]. Instead of simply squaring a number, [math]f + g[/math] first subtracts [math]2[/math] and then squares. Its graph will be just like that of [math]y = x^2[/math] except that it will be shifted two units to the right.

[[math]] \begin{array}{r|r|c} \hline x & f(x) & 2f(x) \\ \hline 0 & -2 & -4 \\ 1 & -1 & -2 \\ 2 & 0 & 0 \\ 3 & 1 & 2 \\ \hline \end{array} [[/math]]


[[math]] \begin{array}{r|c} \hline x & g(x) \\ \hline 0 & 6 \\ 5 & 6 \\ \frac{5}{2} & -\frac{1}{4} \\ 1 & 2 \\ 4 & 2 \\ \hline \end{array} [[/math]]



Up to this point we have used the letters [math]f[/math], [math]g[/math], [math]h[/math], [math]F[/math], [math]G[/math], and [math]H[/math] to denote functions,and the letters [math]x[/math], [math]y[/math], [math]a[/math], [math]b[/math], and [math]c[/math] to denote elements of sets---usually real numbers. However, the letters in the second set are sometimes also used as functions. This occurs, for example, when we speak of [math]x[/math] as a real variable. As such, it not only is the name of a real number but also can take on many different values: [math]5[/math], or [math]-7[/math], or [math]\pi[/math], or \ldots. Thus the variable [math]x[/math] is a function. Specifically, it is the very simple function that assigns the value [math]5[/math] to the number [math]5[/math], the value [math]-7[/math] to the number [math]-7[/math], the value [math]\pi[/math] to [math]\pi[/math], \ldots. For every real number [math]a[/math], we have

[[math]] x(a) = a. [[/math]]

This function is called the identity function. Suppose, for example, that [math]s[/math] is used to denote the distance that a stone falling freely in space has fallen. The value of [math]s[/math] increases as the stone falls and depends on the length of time [math]t[/math] that it has fallen according to the equation [math]s= {\frac{1}{2}}g{t^2}[/math], where [math]g[/math] is the constant gravitational acceleration. (This formula assumes no air resistance, that the stone was at rest at time [math]t = 0[/math], and that distance is measured from the starting point.) Thus [math]s[/math] has the value [math]{\frac{9}{2}}g[/math] if [math]t[/math] has the value [math]3[/math], and, more generally, the value [math]{\frac{1}{2}}g{a^2}[/math] when [math]t[/math] has the value [math]a[/math]. If we consider [math]t[/math] to be another name for the identity function, then [math]s[/math] may be regarded as the function whose value is

[[math]] s(a) = {\frac{1}{2}}{g{a^2}} = {\frac{1}{2}}{g(t(a))^2} [[/math]]

for every real number [math]a[/math]. The original equation [math]s = {\frac{1}{2}}g{t^2}[/math] then states the relation between the two functions [math]s[/math] and [math]t[/math]. The fact that [math]s[/math] and [math]t[/math] take on different values is also expressed by referring to them as variables. A variable is simply a name of a function. In our example [math]s[/math] is called a dependent variable, and [math]t[/math] an independent variable, because the values of [math]s[/math] depend on those of [math]t[/math] according to [math]s = {\frac{1}{2}}g{t^2}[/math]. Thus an independent variable is a name for the identity function, and a dependent variable is one that is not independent. A real variable is therefore a name of a real-valued function. Since the arithmetic operations of addition, subtraction, multiplication, and division have been defined for real-valued functions, they are automatically defined for real variables. We shall generally use the letter [math]x[/math] to denote an independent variable. This raises the question: How does one tell whether an occurrence of [math]x[/math] denotes a real number or the identity function? The answer is that the notation alone does not tell, but the context and the reader's understanding should. However, a more practical reply is that it doesn't really make much difference. We may regard [math]f(x)[/math] as either the value of the function [math]f[/math] at the number [math]x[/math] or as the composition of [math]f[/math] with the variable [math]x[/math]. If [math]x[/math] is an independent variable, the function [math]f(x)[/math] is then the same thing as [math]f[/math].

Example

The conventions that we have adopted concerning the use of variables give our notations a flexibility that is both consistent and extremely useful. Consider, for example, the equation

[[math]] y= 2x^2 - 3x. [[/math]]

On the one hand, we may consider the subset of [math]\R^2[/math], pictured in Figure,

that consists of all ordered pairs [math](x, y)[/math] such that [math]y = 2x^2 - 3x[/math]. This subset is a function [math]f[/math] whose value at an arbitrary real number [math]x[/math] is the real number [math]f(x) = 2x^2 - 3x[/math]. Alternatively, we may regard [math]x[/math] as an independent variable, i.e., the identity function. The composition of [math]f[/math] with [math]x[/math] is then the function [math]f(x) = 2x^2 - 3x[/math], whose value at [math]2[/math], for instance, is

[[math]] (f(x))(2) = f(x(2)) = f(2) = 8 - 6 = 2. [[/math]]

A third interpretation is that [math]y[/math] is a dependent variable that depends on [math]x[/math] according to the equation [math]y = 2x^2 - 3x[/math]. That is, [math]y[/math] is the name of the function [math]2x^2 - 3x[/math].

Example

Let [math]F[/math] be the function defined by [math]F(x) = x^3 + x + 1[/math]. If [math]u = \sqrt{x - 2}[/math], then

[[math]] \begin{eqnarray*} F(u) &=& u^3 + u + 1 \\ &=& (x - 2)^{3/2} + (x - 2)^{1/2} + 1. \end{eqnarray*} [[/math]]

If we denote the function [math]F(x)[/math] by [math]w[/math], then

[[math]] u + w = \sqrt{x - 2} + x^3 + x + 1, [[/math]]

[[math]] uw = (x - 2)^{1/2} (x^3 + x + 1). [[/math]]

On the other hand, we may let [math]G[/math] be the function defined by [math]G(x) = \sqrt{x - 2}[/math] for every real number [math]x \geq 2[/math]. Then [math]G + F[/math] and [math]GF[/math] are the functions defined, respectively, by

[[math]] \begin{eqnarray*} (G + F)(x) &=& G(x) + F(x) \\ &=& \sqrt{x - 2} + x^3 + x + 1, \\ (GF)(x) &=& G(x)F(x) \\ &=& (x - 2)^{1/2} (x^3 + x + 1). \end{eqnarray*} [[/math]]


To say that [math]a[/math] is a real constant means first that it is a real number. Second, it may or may not matter which real number [math]a[/math] is, but it is fixed for the duration of the discussion in which it occurs. Similarly, a constant function is one which takes on just one value; i.e., its range consists of a single element. For example, consider the constant function [math]f[/math] defined by

[[math]] f(x) = 5, \;\;\; - \infty \lt x \lt \infty. [[/math]]

The graph of [math]f[/math] is the straight line parallel to the [math]x[/math]-axis that intersects the [math]y[/math]-axis in the point (0, 5); see Figure.

We shall commonly use lower-case letters at the beginning of the alphabet, e.g., [math]a[/math], [math]b[/math], [math]c[/math],..., to denote both constants and constant functions.

Example

Consider the function [math]ax + b[/math], where [math]a[/math] and [math]b[/math] are constants, [math]a \neq 0[/math], and [math]x[/math] is an independent variable. The graph of this function is a straight line that cuts the [math]y[/math]-axis at [math]b[/math] and the [math]x[/math]-axis at [math]-\frac{b}{a}[/math]. It is drawn in Figure.

This function is the sum of the constant function [math]b[/math] and the function which is the product of the constant function [math]a[/math] and the identity function [math]x[/math].


General references

Doyle, Peter G. (2008). "Crowell and Slesnick's Calculus with Analytic Geometry" (PDF). Retrieved Oct 29, 2024.