guide:Eb0a63a097: Difference between revisions
No edit summary |
mNo edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
<div class="d-none"><math> | |||
\newcommand{\ex}[1]{\item } | |||
\newcommand{\sx}{\item} | |||
\newcommand{\x}{\sx} | |||
\newcommand{\sxlab}[1]{} | |||
\newcommand{\xlab}{\sxlab} | |||
\newcommand{\prov}[1] {\quad #1} | |||
\newcommand{\provx}[1] {\quad \mbox{#1}} | |||
\newcommand{\intext}[1]{\quad \mbox{#1} \quad} | |||
\newcommand{\R}{\mathrm{\bf R}} | |||
\newcommand{\Q}{\mathrm{\bf Q}} | |||
\newcommand{\Z}{\mathrm{\bf Z}} | |||
\newcommand{\C}{\mathrm{\bf C}} | |||
\newcommand{\dt}{\textbf} | |||
\newcommand{\goesto}{\rightarrow} | |||
\newcommand{\ddxof}[1]{\frac{d #1}{d x}} | |||
\newcommand{\ddx}{\frac{d}{dx}} | |||
\newcommand{\ddt}{\frac{d}{dt}} | |||
\newcommand{\dydx}{\ddxof y} | |||
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} | |||
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} | |||
\newcommand{\dist}{\mathrm{distance}} | |||
\newcommand{\arccot}{\mathrm{arccot\:}} | |||
\newcommand{\arccsc}{\mathrm{arccsc\:}} | |||
\newcommand{\arcsec}{\mathrm{arcsec\:}} | |||
\newcommand{\arctanh}{\mathrm{arctanh\:}} | |||
\newcommand{\arcsinh}{\mathrm{arcsinh\:}} | |||
\newcommand{\arccosh}{\mathrm{arccosh\:}} | |||
\newcommand{\sech}{\mathrm{sech\:}} | |||
\newcommand{\csch}{\mathrm{csch\:}} | |||
\newcommand{\conj}[1]{\overline{#1}} | |||
\newcommand{\mathds}{\mathbb} | |||
</math></div> | |||
In this section we shall study the problem of finding a function given its | |||
derivative. The topic is a large one, and the present treatment is only an introduction. Many techniques for finding a function whose derivative is known have been developed, and some of these will be studied in Chapter 7. | |||
Recall that an antiderivative of a function <math>f</math> is any differentiable function <math>F</math> with the property that <math>F'(x) = f(x)</math> for every <math>x</math> in the domain of <math>f</math>. An antiderivative of <math>f</math> is also called an '''indefinite integral''' of <math>f</math> and is denoted by <math>\int f(x) dx</math>. If <math>F' = f</math>, we write | |||
<math display="block"> | |||
\int f(x) dx = F(x) + c. | |||
</math> | |||
Since the most we know about <math>\int f(x) dx</math> and <math>F(x)</math> is that they have the same derivative <math>f(x)</math>, they may very well differ by a nonzero constant. If the constant <math>c</math> is omitted, there is a very real possibility of making an error, since a particular indefinite integral may not be the one which is the solution to the problem at hand. | |||
<span id="eq4.6.1"/> | |||
'''Example''' | |||
At every point <math>(x,f(x))</math> on the graph of a given function <math>f</math>, there is a tangent line with slope equal to <math>x^2</math>. If the graph passes through the point (3, 2), find <math>f</math>. The solution is based on the fact that the slope of the tangent line is given by the derivative. Hence <math>f'(x) = x^2</math>. One function with this derivative is <math>\frac{x^3}{3}</math>, and so | |||
<span id{{=}}"eq4.6.1"/> | |||
<math display="block"> | |||
\begin{equation} | |||
f(x)= \frac{x^3}{3} + c, | |||
\label{eq4.6.1} | |||
\end{equation} | |||
</math> | |||
for some constant <math>c</math>. We also write | |||
<math display="block"> | |||
\int x^2 dx = \frac{x^3}{3} + c. | |||
</math> | |||
Since the point (3, 2) lies on the graph, we know that <math>f(3) = 2</math>. Thus | |||
<math display="block"> | |||
2 = f(3) = \frac{3^3}{3} + c = 9 + c, | |||
</math> | |||
whence <math>c = - 7</math>, and we conclude that | |||
<math display="block"> | |||
f(x) = \frac{x^3}{3} - 7. | |||
</math> | |||
Omission of the <math>c</math> in equation (1) would have lead to the incorrect answer <math>f(x) = \frac{x^3}{3}</math>. | |||
\medskip | |||
The reason for calling an antiderivative of a function <math>f</math> an indefinite integral and for denoting it by <math>\int f(x) dx</math> is its close connection with the definite integral. Let <math>f</math> be continuous on an interval containing <math>a</math> and <math>b</math>. Since <math>\frac{d}{dx} {\int f(x) dx} = f(x)</math>, we obtain the formula | |||
<span id{{=}}"eq4.6.2"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\int_{a}^{b} f(x) dx = \int f(x) dx \Big|_{a}^{b} | |||
\label{eq4.6.2} | |||
\end{equation} | |||
</math> | |||
by applying Corollary (5.3) of the Fundamental Theorem of Calculus. The value of <math>\int f(x)dx|_{a}^{b}</math> is the same for any two indefinite integrals of <math>f</math> and there is therefore no need to include the constant c in applications of equation (2). For example, even though | |||
<math display="block"> | |||
\int (2x + 1) dx = x^2 + x + c, | |||
</math> | |||
for an arbitrary real number <math>c</math>, we may write | |||
<math display="block"> | |||
\int_{0}^{2} (2x + 1 ) dx = \int (2x + 1 ) dx \Big|_{0}^{2} | |||
= (x^2 + x) \Big|_{0}^{2} = 6. | |||
</math> | |||
The integration techniques that we shall consider are expressed in formulas for finding indefinite integrals. The first four of these, (6.1), (6.2), (6.3), and (6.4), have already been used in computing definite integrals. We | |||
write them down only to make them explicit. They are: | |||
{{proofcard|Theorem|theorem-1| | |||
<math display="block"> | |||
\int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx. | |||
</math>|}} | |||
{{proofcard|Theorem|theorem-2| | |||
<math display="block"> | |||
\int kf(x) dx = k \int f(x) dx, \;\mbox{for every constant}\; k. | |||
</math>|}} | |||
{{proofcard|Theorem|theorem-3| | |||
<math display="block"> | |||
\int dx = x + c. | |||
</math>|}} | |||
{{proofcard|Theorem|theorem-4| | |||
<math display="block"> | |||
\int x^r dx = \frac{x^{r + 1}}{r + 1} + c, \;\mbox{where $r$ is a rational number different from -1.} | |||
</math>|}} | |||
Since an indefinite integral is determined only to within an additive constant, (6.1) and (6.2) are open to a possible (but unlikely) false interpretation. The precise statement of (6.1) is: ''If <math>F</math> is an indefinite integral of <math>f</math> and if <math>G</math> is an indefinite integral of <math>g</math>, then <math>F + G</math> is an indefinite integral of <math>f + g</math>''. The proof takes one line: | |||
<math display="block"> | |||
(F+ G)' = F' + G' = f + g. | |||
</math> | |||
On the other hand, if <math>F</math>, <math>G</math>, and <math>H</math> are three arbitrary indefinite integrals of <math>f</math>, <math>g</math>, and <math>f + g</math>, respectively, we certainly cannot infer that <math>H = F + G</math>. All we know is that <math>H' = F' + G'</math>, whence <math>H = F + G + c</math>. Similarly, (6.2) should be read: ''If <math>F</math> is an indefinite integral of <math>f</math>, then <math>kF</math> is an indefinite integral of <math>kf</math>''. The proof: | |||
<math display="block"> | |||
(kF)' = kF' = kf. | |||
</math> | |||
The proof of (6.4) is the equation | |||
<math display="block"> | |||
\frac{d}{dx} \Bigl( \frac{x^{r + 1}}{r + 1} + c \Bigr) = x^r, | |||
</math> | |||
and (6.3) is simply the special case of (6.4) obtained by setting <math>r = 0</math>. Note that each of these four integration formulas is the inverse of one of the basic rules for differentiation derived in Section 7 of Chapter 1. | |||
'''Example''' | |||
Evaluate the following three integrals: | |||
<ul style="list-style-type:lower-roman"> | |||
<li><math>\int \Bigl( 2x^2 + \frac{2}{x^2} \Bigr)dx,</math></li> | |||
<li><math>\int (y^3 + 2y^2 + 2y + 1 )dy,</math></li> | |||
<li><math>\int_{1}^{5} (s^{2/3} + 1)ds.</math></li> | |||
</ul> | |||
Computation of the indefinite integrals follows directly from (6.1), | |||
(6.2), (6.3), and (6 4) Thus | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int \Bigl( 2x^2 + \frac{2}{x^2} \Bigr) dx &=& 2 \int x^2 dx + 2 \int x^{-2} dx \\ | |||
&=& 2 \frac{x^3}{3} + 2 \frac{x^{-1}}{-1} + c \\ | |||
&=& \frac{2}{3} x^3 - \frac{2}{x} + c. | |||
\end{eqnarray*} | |||
</math> | |||
Since separately we would write <math>2 \int x^2 dx = \frac{2}{3} x^3 + c</math> and also <math>2 \int x^{-2} dx = -\frac{2}{x} + c</math>, one might think that two constants of integration should appear in the sum, i.e., that the answer should have been written | |||
<math display="block"> | |||
\int \Bigl( 2x^2 + \frac{2}{x^2} \Bigr) dx = \frac{2}{3} x^3 + c_1 - \frac{2}{x} + c_2. | |||
</math> | |||
Although this last equation is not false, it is unnecessarily complicated and also misleading. If <math>F</math> is one indefinite integral of a function, the specification of any other requires the specification of one additional number, not two. Remember that, for a given <math>F</math>, the set of all functions <math>F + c</math> such that <math>c</math> is an arbitrary real number is identical to the set of all functions <math>F + c_1 + c_2</math> such that <math>c_1</math> and <math>c_2</math> are arbitrary real numbers. The sum of two arbitrary constants is still an arbitrary constant. | |||
To do (ii), one must realize that the sum rule (6.1) implies an analogous rule for integrating the sum of three functions, or four, or any finite number. We get | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int (y^3 + 2y^2 + 2y + 1) dy &=& | |||
\int y^3 dy + 2 \int y^2 dy + 2 \int y dy + \int dy \\ | |||
&=& \frac{y^4}{4} +2\frac{y^3}{3} +2\frac{y^2}{2} +y + c \\ | |||
&=& \frac{1}{4}y^4 + \frac{2}{3}y^3 + y^2 + y + c. | |||
\end{eqnarray*} | |||
</math> | |||
Finally, to evaluate (iii), we combine the above rules of integration with equation (2) to obtain | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int_{1}^{5} (s^{2 /3} + 1) ds &=& \Bigl( \frac{s^{5/3}}{5/3} + s \Bigr) \Big|_{1}^{5}\\ | |||
&=& [\frac{3}{5}(5)^{5/3} + 5] - [\frac{3}{5} (1)^{5/3} + 1] \\ | |||
&=& 3(5)^{2/3} + \frac{17}{5}. | |||
\end{eqnarray*} | |||
</math> | |||
The Chain Rule provides an extremely useful technique for computing integrals. Suppose that <math>F</math> is an antiderivative of <math>f</math> and that <math>g</math> is a differentiable function. Aecording to the Chain Rule, | |||
<math display="block"> | |||
[F(g)]' = F'(g)g'. | |||
</math> | |||
Since <math>F' = f</math>, we conclude that | |||
<math display="block"> | |||
[F(g)]' = F'(g)g' = f(g)g'; | |||
</math> | |||
i.e., ''the composition $F(g)$ is an antiderivative, or indefinite integral, of $f(g)g'$''. | |||
Thus we have proved: | |||
{{proofcard|Theorem|theorem-5|If <math>F</math> is any indefinite integral of <math>f</math>, then | |||
<math display="block"> | |||
\int f(g(x))g'(x) dx = F(g(x)) + c. | |||
</math>|}} | |||
This formula tells us that we can integrate a function of the form <math>f(g(x))g'(x)</math> provided we know how to integrate <math>f(x)</math>. | |||
'''Example''' | |||
Compute <math>\int \sqrt {x^3 + x + 1} (3x^2 + 1)dx</math>. The integrand is the product of two functions. The first factor, <math>\sqrt{x^3 + x + 1}</math>, is the composition of <math>x^3 + x + 1</math> with the square root, and we know how to integrate <math>\sqrt{x}</math>. The second factor is <math>3x^2 + 1</math>, which is the derivative of <math>x^3 + x + 1</math>. Hence (6.5) is applicable. We have | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
g(x) &=& x^3+x+ 1,\\ | |||
f(x) &=& \sqrt{x}. | |||
\end{eqnarray*} | |||
</math> | |||
Since | |||
<math display="block"> | |||
\int \sqrt{x} dx = \int x^{1/2} dx = \frac{2}{3} x^{3/2} + c, | |||
</math> | |||
we take <math>F(x) = \frac{2}{3}x^{3/2}</math>. According to (6.5), the answer to the problem is | |||
<math display="block"> | |||
F(g(x)) + c = \frac{2}{3}(x^3 + x + 1)^{3/2} + c. | |||
</math> | |||
That is, | |||
<math display="block"> | |||
\int \sqrt{x^3 + x + 1} (3x^2 + 1) dx = \frac{2}{3}(x^3 + x + 1)^{3/2} + c. | |||
</math> | |||
We can check this answer by taking its derivative. We obtain | |||
<math display="block"> | |||
\frac{d}{dx} [\frac{2}{3} (x^3 + x + 1)^{3/2} + c] = (x^3 + x + 1)^{1/2} (3x^2 + 1), | |||
</math> | |||
which is the original integrand. | |||
'''Example''' | |||
Evaluate <math>\int (x^2 + 1)^5 dx</math>. It is possible to do this problem by first expanding <math>(x^2 + 1)^5</math> by the Binomial Theorem, but formula (6.5) makes this unnecessary. Again, the integrand is the product of two functions. The first is <math>(x^2 + 1)^5</math>, which is the composition <math>f(g(x))</math> of the two functions <math>g(x) = x^2 + 1</math> and <math>f(x) = x^5</math>. The latter we know how to integrate: | |||
<math display="block"> | |||
\int x^5 dx = \frac{x^6}{6} + c, | |||
</math> | |||
so we take <math>F(x) = \frac{x^6}{6}</math>. The second factor in the integrand is <math>x</math>, which is not equal to <math>g'(x) = 2x</math>, but is a constant multiple of it. This is just as good because of the general rule <math>\int kf (x) dx = k \int f (x) dx</math>. In this case, we may write | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int (x^2 + 1)^{5} x dx &=& \frac{2}{2} \int (x^2 + 1)^{5} xdx \\ | |||
&=& \frac{1}{2} \int (x^2 + 1)^{5}(2x)dx \\ | |||
&=& \frac{1}{2} \int f(g(x))g'(x) dx\\ | |||
&=& \frac{1}{2}F(g(x)) + c. | |||
\end{eqnarray*} | |||
</math> | |||
Since <math>F(x) = \frac{x^6}{6}</math>, we have <math>F(g(x)) = \frac{(x^2 + 1)^6}{6}</math> and so | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int (x^2 + 1 )^{5} x dx | |||
&=& \Bigl( \frac{1}{2} \Bigr) \Bigl[ \frac{(x^2 + 1)^6}{6} \Bigr] + c\\ | |||
&=& \frac{(x^2 + 1)^6}{12} + c. | |||
\end{eqnarray*} | |||
</math> | |||
The derivative of the indefinite integral should be the function which was integrated, i.e., the integrand. Checking, we get | |||
<math display="block"> | |||
\frac{d}{dx} \Bigl[ \frac{(x^2 + 1)^6}{12} + c \Bigr] = \frac{6}{12}(x^2 + 1)^{5} 2x = (x^2 + 1)^{5}x. | |||
</math> | |||
To summarize: Formula (6.5) is applicable if the integrand is a product of two functions one of which is a composition <math>f(g(x))</math> and the other of which is <math>g'(x)</math> or possibly a constant multiple of <math>g'(x)</math>. With a little practice the | |||
reader should be able to recognize immediately, for example, that of the three integrals | |||
<math display="block"> | |||
\begin{array}{l} | |||
\int \sqrt{x^2 + 2}dx,\\ | |||
\\ | |||
\int \sqrt{x^2 + 2}xdx,\\ | |||
\\ | |||
\int \sqrt{x^2 + 2}x^2dx, | |||
\end{array} | |||
</math> | |||
only the middle one can be successfully attacked by this method. | |||
Formula (6.5) implies an analogous fact about definite integrals. Called the '''Change of Variable Theorem for Definite Integrals''', it is the following: | |||
{{proofcard|Theorem|theorem-6|If both integrands are continuous functions on their respective intervals of integration, then | |||
<math display="block"> | |||
\int_{a}^{b} f (g(x))g'(x) dx = \int_{g(a)}^{g(b)} f (y) dy. | |||
</math> | |||
|Since the integrands are continuous, both integrals exist. Let <math>F</math> be an indefinite integral of <math>f</math>. By the definition of the definite integral, | |||
<math display="block"> | |||
\int_{g(a)}^{g(b)} f(y) dy = F(y) \Big|_{g(a)}^{g(b)} = F(g(b)) - F(g(a)). | |||
</math> | |||
By (6.5), | |||
<math display="block"> | |||
\int_{a}^{b} f(g(x))g'(x)dx = F(g(x)) \Big|_{a}^{b} = F(g(b)) - F(g(a)). | |||
</math> | |||
This completes the proof.}} | |||
'''Example''' | |||
Compute <math>\int_{-2}^{2} \frac{x + 1}{\sqrt{x^2 + 2x + 2}} dx</math>. We first check that the integrand is continuous on the interval [ - 2, 2]. Since the minimum value of <math>x^2 + 2x + 2</math> is 1, which is positive, we know that the denominator is never zero, and so the integral is defined. Set <math>g(x) = x^2 + 2x + 2</math> and <math>f (y) = y^{-1/2}</math>. Then <math>g'(x) = 2x + 2</math>, <math>g(- 2) = 2</math>, and <math>g(2) = 10</math>. Hence | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int_{-2}^{2} \frac{x + 1}{\sqrt{x^2 + 2x + 2}} dx | |||
&=& \frac{1}{2} \int_{-2}^{2} \frac{2x + 2}{\sqrt{x^2 + 2x + 2}} dx \\ | |||
&=& \frac{1}{2} \int_{-2}^{2} f(g(x))g'(x)dx\\ | |||
&=& \frac{1}{2}\int_{2}^{10} y^{-1/2} dy. | |||
\end{eqnarray*} | |||
</math> | |||
Since <math>\int y^{-1/2} dy = 2y^{1/2} + c</math>, we obtain | |||
<math display="block"> | |||
\frac{1}{2} \int_{2}^{10} y^{-1/2} dy = y^{1/2} \Big|_{2}^{10} = \sqrt 10 -\sqrt 2. | |||
</math> | |||
We conclude that | |||
<math display="block"> | |||
\int_{-2}^{2} \frac{x+1}{\sqrt{x^2 + 2x +2}} dx = \sqrt 10 -\sqrt 2. | |||
</math> | |||
The differential of a function <math>F</math> was defined in Section 6 of Chapter 2, | |||
and was shown to satisfy the basic equation <math>dF(x) = F'(x) dx</math>. | |||
If <math>F' = f</math>, we therefore obtain | |||
<span id{{=}}"eq4.6.3"/> | |||
<math display="block"> | |||
\begin{equation} | |||
dF(x) = F'(x) dx = f (x) dx. | |||
\label{eq4.6.3} | |||
\end{equation} | |||
</math> | |||
In this section we have expressed the fact that <math>F</math> is an antiderivative of <math>f</math> by writing | |||
<span id{{=}}"eq4.6.4"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\int f(x) dx = F(x) + c. | |||
\label{eq4.6.4} | |||
\end{equation} | |||
</math> | |||
Equations (3) and (4) suggest that we interpret the symbol <math>dx</math> that appears to the right of the integral sign not merely as a piece of notation but as a differential. With this interpretation, the symbol <math>\int</math> becomes a notation for the operation which is the inverse of taking differentials. Thus, for any differentiable function <math>F</math>, we define | |||
<span id{{=}}"eq4.6.5"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\int dF(x) = F(x) + c. | |||
\label{eq4.6.5} | |||
\end{equation} | |||
</math> | |||
If <math>f(x)</math> is given and we find <math>F(x)</math> such that <math>dF(x) = f(x) dx</math>, then | |||
<math display="block"> | |||
\int f(x) dx = \int dF(x) = F(x) + c. | |||
</math> | |||
If a function is denoted by a variable <math>u</math>, the definition (5) has the simple form <math>\int du = u + c</math>. Moreover, in terms of differentials, Theorem (6.5) also has the following simple form: | |||
{{proofcard|Theorem|theorem-7|If <math>F' = f</math> and if <math>u</math> is a differentiable function, then | |||
<math display="block"> | |||
\int f(u) du = F(u) + c. | |||
</math> | |||
|If <math>u = g(x)</math>, then <math>du = g'(x) dx</math>. The above equation therefore becomes | |||
<math display="block"> | |||
\int f(g(x))g'(x) dx = F(g(x)) + c, | |||
</math> | |||
and this is just (6.5).}} | |||
Another way of proving (6.7) is to start from the equation | |||
<span id{{=}}"eq4.6.6"/> | |||
<math display="block"> | |||
\begin{equation} | |||
dF(u) = F'(u) du, | |||
\label{eq4.6.6} | |||
\end{equation} | |||
</math> | |||
[see Theorem (6.1), Chapter 2]. | |||
From this follows <math>dF(u) = f(u) du</math>, and so | |||
<math display="block"> | |||
F(u) + c = \int dF(u) = \int f(u) du. | |||
</math> | |||
It is worth noting that Theorem (6.5) is simply an inverse statement of the Chain Rule. The Chain Rule was also the ''raison d'\^{e}tre'' behind equation (6). The differential is a handy device solely because this important theorem is true. | |||
'''Example''' | |||
Evaluate the integrals | |||
<ul style="list-style-type:lower-roman"> | |||
<li><math>\int \sqrt{5x + 2} dx,</math></li> | |||
<li><math>\int s(s^2 - 1)^{125} ds.</math></li> | |||
</ul> | |||
To do (i), set <math>u = 5x + 2</math>. Then <math>du = 5 dx</math>, and so <math>dx = \frac{1}{5} du</math>. Hence | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int \sqrt{5x + 2} dx | |||
&=& \frac{1}{5} \int \sqrt{u} du = \frac{1}{5}\frac{2}{3} u^{3/2} + c \\ | |||
&=& \frac{2}{15}(5x + 2)^{3/2} + c. | |||
\end{eqnarray*} | |||
</math> | |||
Similarly, in (ii), let <math>u = s^2 - 1</math>. We get <math>du = 2s ds</math> and | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int s(s^2 - 1)^{125} ds = \frac{1}{2} \int u^{125} du | |||
&=& \frac{1}{2} \frac{1}{126} u^{126} + c \\ | |||
&=& \frac{1}{252} (s^2 - 1)^{126} + c. | |||
\end{eqnarray*} | |||
</math> | |||
In each of these examples the reader should verify that the derivative of the answer gives back the original integrand. | |||
Each of the integral formulas (6.1), (6.2), (6.3), and (6.4) can be written as a fact about the integral of certain differentials. Let <math>u</math> and <math>v</math> be | |||
differentiable functions and <math>c</math> an arbitrary constant. Then | |||
{{proofcard|Theorem|theorem-8|(6.1') | |||
<math display="block"> | |||
\int (du + dv) = \int du + \int dv. | |||
</math>|}} | |||
{{proofcard|Theorem|theorem-9|(6.2') | |||
<math display="block"> | |||
\int k du = k \int du,\; \mbox{for ecery constant $k$}. | |||
</math>|}} | |||
{{proofcard|Theorem|theorem-10|(6.3') | |||
<math display="block"> | |||
\int du = u + c. | |||
</math>|}} | |||
{{proofcard|Theorem|theorem-11|(6.4') | |||
<math display="block"> | |||
\int u' du = \frac{u ^{r + 1}}{r + 1} + c, \;\mbox{where $r$ is a rational number and $r \neq -1$}. | |||
</math>|}} | |||
==General references== | |||
{{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}} |
Latest revision as of 22:57, 18 November 2024
In this section we shall study the problem of finding a function given its derivative. The topic is a large one, and the present treatment is only an introduction. Many techniques for finding a function whose derivative is known have been developed, and some of these will be studied in Chapter 7. Recall that an antiderivative of a function [math]f[/math] is any differentiable function [math]F[/math] with the property that [math]F'(x) = f(x)[/math] for every [math]x[/math] in the domain of [math]f[/math]. An antiderivative of [math]f[/math] is also called an indefinite integral of [math]f[/math] and is denoted by [math]\int f(x) dx[/math]. If [math]F' = f[/math], we write
Since the most we know about [math]\int f(x) dx[/math] and [math]F(x)[/math] is that they have the same derivative [math]f(x)[/math], they may very well differ by a nonzero constant. If the constant [math]c[/math] is omitted, there is a very real possibility of making an error, since a particular indefinite integral may not be the one which is the solution to the problem at hand.
ExampleAt every point [math](x,f(x))[/math] on the graph of a given function [math]f[/math], there is a tangent line with slope equal to [math]x^2[/math]. If the graph passes through the point (3, 2), find [math]f[/math]. The solution is based on the fact that the slope of the tangent line is given by the derivative. Hence [math]f'(x) = x^2[/math]. One function with this derivative is [math]\frac{x^3}{3}[/math], and so
Since the point (3, 2) lies on the graph, we know that [math]f(3) = 2[/math]. Thus
The integration techniques that we shall consider are expressed in formulas for finding indefinite integrals. The first four of these, (6.1), (6.2), (6.3), and (6.4), have already been used in computing definite integrals. We write them down only to make them explicit. They are:
Since an indefinite integral is determined only to within an additive constant, (6.1) and (6.2) are open to a possible (but unlikely) false interpretation. The precise statement of (6.1) is: If [math]F[/math] is an indefinite integral of [math]f[/math] and if [math]G[/math] is an indefinite integral of [math]g[/math], then [math]F + G[/math] is an indefinite integral of [math]f + g[/math]. The proof takes one line:
On the other hand, if [math]F[/math], [math]G[/math], and [math]H[/math] are three arbitrary indefinite integrals of [math]f[/math], [math]g[/math], and [math]f + g[/math], respectively, we certainly cannot infer that [math]H = F + G[/math]. All we know is that [math]H' = F' + G'[/math], whence [math]H = F + G + c[/math]. Similarly, (6.2) should be read: If [math]F[/math] is an indefinite integral of [math]f[/math], then [math]kF[/math] is an indefinite integral of [math]kf[/math]. The proof:
and (6.3) is simply the special case of (6.4) obtained by setting [math]r = 0[/math]. Note that each of these four integration formulas is the inverse of one of the basic rules for differentiation derived in Section 7 of Chapter 1.
Example
Evaluate the following three integrals:
- [math]\int \Bigl( 2x^2 + \frac{2}{x^2} \Bigr)dx,[/math]
- [math]\int (y^3 + 2y^2 + 2y + 1 )dy,[/math]
- [math]\int_{1}^{5} (s^{2/3} + 1)ds.[/math]
Computation of the indefinite integrals follows directly from (6.1), (6.2), (6.3), and (6 4) Thus
Finally, to evaluate (iii), we combine the above rules of integration with equation (2) to obtain
The Chain Rule provides an extremely useful technique for computing integrals. Suppose that [math]F[/math] is an antiderivative of [math]f[/math] and that [math]g[/math] is a differentiable function. Aecording to the Chain Rule,
If [math]F[/math] is any indefinite integral of [math]f[/math], then
This formula tells us that we can integrate a function of the form [math]f(g(x))g'(x)[/math] provided we know how to integrate [math]f(x)[/math].
Example
Compute [math]\int \sqrt {x^3 + x + 1} (3x^2 + 1)dx[/math]. The integrand is the product of two functions. The first factor, [math]\sqrt{x^3 + x + 1}[/math], is the composition of [math]x^3 + x + 1[/math] with the square root, and we know how to integrate [math]\sqrt{x}[/math]. The second factor is [math]3x^2 + 1[/math], which is the derivative of [math]x^3 + x + 1[/math]. Hence (6.5) is applicable. We have
Example
Evaluate [math]\int (x^2 + 1)^5 dx[/math]. It is possible to do this problem by first expanding [math](x^2 + 1)^5[/math] by the Binomial Theorem, but formula (6.5) makes this unnecessary. Again, the integrand is the product of two functions. The first is [math](x^2 + 1)^5[/math], which is the composition [math]f(g(x))[/math] of the two functions [math]g(x) = x^2 + 1[/math] and [math]f(x) = x^5[/math]. The latter we know how to integrate:
To summarize: Formula (6.5) is applicable if the integrand is a product of two functions one of which is a composition [math]f(g(x))[/math] and the other of which is [math]g'(x)[/math] or possibly a constant multiple of [math]g'(x)[/math]. With a little practice the reader should be able to recognize immediately, for example, that of the three integrals
If both integrands are continuous functions on their respective intervals of integration, then
Since the integrands are continuous, both integrals exist. Let [math]F[/math] be an indefinite integral of [math]f[/math]. By the definition of the definite integral,
Example
Compute [math]\int_{-2}^{2} \frac{x + 1}{\sqrt{x^2 + 2x + 2}} dx[/math]. We first check that the integrand is continuous on the interval [ - 2, 2]. Since the minimum value of [math]x^2 + 2x + 2[/math] is 1, which is positive, we know that the denominator is never zero, and so the integral is defined. Set [math]g(x) = x^2 + 2x + 2[/math] and [math]f (y) = y^{-1/2}[/math]. Then [math]g'(x) = 2x + 2[/math], [math]g(- 2) = 2[/math], and [math]g(2) = 10[/math]. Hence
The differential of a function [math]F[/math] was defined in Section 6 of Chapter 2, and was shown to satisfy the basic equation [math]dF(x) = F'(x) dx[/math]. If [math]F' = f[/math], we therefore obtain
If a function is denoted by a variable [math]u[/math], the definition (5) has the simple form [math]\int du = u + c[/math]. Moreover, in terms of differentials, Theorem (6.5) also has the following simple form:
If [math]F' = f[/math] and if [math]u[/math] is a differentiable function, then
If [math]u = g(x)[/math], then [math]du = g'(x) dx[/math]. The above equation therefore becomes
Another way of proving (6.7) is to start from the equation
It is worth noting that Theorem (6.5) is simply an inverse statement of the Chain Rule. The Chain Rule was also the raison d'\^{e}tre behind equation (6). The differential is a handy device solely because this important theorem is true.
Example
Evaluate the integrals
- [math]\int \sqrt{5x + 2} dx,[/math]
- [math]\int s(s^2 - 1)^{125} ds.[/math]
To do (i), set [math]u = 5x + 2[/math]. Then [math]du = 5 dx[/math], and so [math]dx = \frac{1}{5} du[/math]. Hence
Similarly, in (ii), let [math]u = s^2 - 1[/math]. We get [math]du = 2s ds[/math] and
In each of these examples the reader should verify that the derivative of the answer gives back the original integrand.
Each of the integral formulas (6.1), (6.2), (6.3), and (6.4) can be written as a fact about the integral of certain differentials. Let [math]u[/math] and [math]v[/math] be differentiable functions and [math]c[/math] an arbitrary constant. Then
(6.1')
(6.2')
(6.3')
(6.4')
General references
Doyle, Peter G. (2008). "Crowell and Slesnick's Calculus with Analytic Geometry" (PDF). Retrieved Oct 29, 2024.