guide:4a2bede4c5: Difference between revisions

From Stochiki
No edit summary
 
mNo edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
<div class="d-none"><math>
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
</math></div>


Consider the function <math>\varphi</math> defined by
<math display="block">
\varphi(x) = \cos x + i \sin x,
</math>
for every real number <math>x</math>. This is a complex-valued function of a real variable.
The domain of <math>\varphi</math> is the set <math>R</math> of all real numbers. For every real number <math>x</math>,
we have
<math display="block">
|\varphi(x)| = \sqrt{\cos^{2}x + \sin^{2}x} = \sqrt{1} = 1.
</math>
It follows that <math>\varphi (x)</math> is a point on the unit circle in the complex plane, i.e.,
the circle with center at the origin and radius 1. Conversely, every point on the
unit circle is equal to <math>(\cos x, \sin x)</math>, for some real number <math>x</math>, and we know that
<math>(\cos x, \sin x) = \cos x + i \sin x</math>. It follows that the range of <math>\varphi</math> is the unit circle.
The function <math>\varphi</math> has the following properties:
{{proofcard|Theorem|theorem-1|
<math display="block">
\begin{array}{lrcl}
\mathrm{( 7.1 )}&                            \varphi (0) &=& 1. \\
\mathrm{( 7.2 )}&            \varphi (a) \varphi (b) &=& \varphi (a + b).\\
\mathrm{( 7.3 )}& \frac{\varphi (a)}{\varphi (b)} &=& \varphi (a - b).\\
\mathrm{( 7.4 )}&                            \varphi( -a) &=& \frac{1}{\varphi (a)}.
\end{array}
</math>
|The proofs are completely straightforward. Thus (7.1) follows from the equations
<math display="block">
\varphi(0) = \cos 0 + i \sin 0 = \cos 0 = 1.
</math>
To prove (7.2), we write
<math display="block">
\begin{eqnarray*}
\varphi (a) \varphi (b) &=& (\cos a + i \sin a)(\cos b + i \sin b)\\
                                &=& \cos a \cos b - \sin a \sin b + i(\sin a \cos b + \cos a \sin b).
\end{eqnarray*}
</math>
The trigonometric identities for the cosine and sine of the sum of two numbers
then imply that
<math display="block">
\varphi (a) \varphi (b) = \cos(a + b) + i \sin(a + b),
</math>
and the right side is by definition equal to <math>\varphi (a + b)</math>.
Thus (7.2) is proved. As a special case of (7.2), we have
<math display="block">
\varphi (a - b) \varphi (b) = \varphi (a - b + b) = \varphi (a).
</math>
On dividing by <math>\varphi(b)</math>, which is never zero, we get (7.3). The last result, (7.4),
is obtained by taking <math>a = 0</math> in (7.3) and then substituting 1 for <math>\varphi (0)</math> in accordance with (7.1). Thus
<math display="block">
\begin{eqnarray*}
\frac{\varphi (0)}{\varphi (b)} &=& \varphi (0 - b),\\
            \frac{1}{\varphi (b)} &=& \varphi (-b).
\end{eqnarray*}
</math>}}
The above four properties of <math>\varphi</math> are also shared by the real-valued exponential function <math>\exp</math> [we recall that <math>\exp(x) = e^{x}</math>]. This fact suggests the possibility of extending the domain and range of <math>\exp</math> into the complex plane. That is, it suggests that the functions <math>\varphi</math> and <math>\exp</math> can be combined to
give a complex-valued exponential function of a complex variable which will have the property
that when its domain is restricted to the real numbers, it is simply <math>\exp</math>. We define such a
function now. For every complex number <math>z = x + iy</math>, let  <math>\mbox{Exp}</math> be the function defined by
<math display="block">
\mbox{Exp}(z) = \exp(x) \varphi(y).
</math>
Thus
<math display="block">
\mbox{Exp}(z) = e^{x}(\cos y + i \sin y).
</math>
If <math>z = x + i0</math>, then <math>z = x</math> and <math>\mbox{Exp}(z) = \exp(x) \varphi (0) = \exp(x)</math>. Hence ''the function $\mbox{Exp}$ is an extension of the function $\exp$.''
It is a routine matter to show that the function  <math>\mbox{Exp}</math> has the exponential properties listed above for <math>\varphi</math>. Following the practice for the real-valued exponential, we shall write <math>\mbox{Exp}(z)</math> as <math>e^z</math>. In this notation therefore, if <math>z = x + iy</math>, the definition reads
<math display="block">
e^z = e^{x}(\cos y + i \sin y).
</math>
The exponential properties are
{{proofcard|Theorem|theorem-2|
<math display="block">
\begin{array}{lrcl}
\mathrm{( 7.1')}&                              e^0 &=& 1. \\
\mathrm{( 7.2')}&        e^{z_{1}}e^{z_{2}} &=& e^{z_{1} + z_{2}}.\\
\mathrm{( 7.3')}& \frac{e^{z_1}}{e^{z_2}} &=& e^{z_{1} - z_{2}}.\\
\mathrm{( 7.4')}&                \frac{1}{e^z}  &=& e^{-z}.
\end{array}
</math>
|The proofs simply use the fact that the functions <math>\exp</math> and <math>e^z</math>
separately have
these properties. Thus
<math display="block">
e^0 = e^{0+i0} = \exp(0) \varphi(0) = 1 \cdot 1 = 1.
</math>
Letting <math>z_{1} = x_{1} + iy_{1}</math> and <math>z_{2} = x_{2} + iy_{2}</math>, we have
<math display="block">
\begin{eqnarray*}
e^{z_{1}}e^{z_{2}} &=& \exp(x_{1}) \varphi (y_{1}) \exp(x_{2})\varphi(y_{2})\\
                            &=& \exp(x_{1} + x_{2}) \varphi (y_{1} + y_{2}).
\end{eqnarray*}
</math>
Since <math>z_{1} + z_{2} = (x_{1} + x_{2}) + i(y_{1} + y_{2})</math>, the right side is by
definition equal to <math>\mbox{Exp}(z_{1} + z_{2})</math>, which is <math>e^{z_{1}+z_2}</math>. The last two propositions,
(7.3') and (7.4'), are corollaries of (7.1') and (7.2') in exactly the same way that (7.3)
and (7.4) follow from (7.1) and (7.2).}}
If <math>x</math> is an arbitrary real number, then
<math display="block">
e^{ix} = e^{0+ix} = e^{0}(\cos x + i \sin x).
</math>
Thus we have the equation
{{proofcard|Theorem|theorem-3|
<math display="block">
e^{ix} = \cos x + i \sin x,  \;\;\;\mathrm{for~every~real~number}\; x.
</math>|}}
<div id="fig 6.20" class="d-flex justify-content-center">
[[File:guide_c5467_scanfig6_20.png | 400px | thumb |  ]]
</div>
Thus if <math>x</math> is any real number, the complex number <math>e^{ix}</math> is the ordered pair
<math>(\cos x, \sin x)</math>. Hence <math>e^{ix}</math> is the point on the unit circle obtained by starting
at the complex number 1 and measuring along the circle at a distance equal to the
absolute value of <math>x</math>, measuring in the counterclockwise direction if <math>x</math> is positive
and in the clockwise direction if it is negative (see Figure 20). In terms of angle,
<math>x</math> is the radian measure of the angle whose initial side is the
positive half of the real axis and whose terminal side contains the arrow representing <math>z</math>.
Letting <math>x = \pi</math> in (7.5), we get <math>e^{i\pi} = \cos \pi + i \sin \pi</math>. Since <math>\cos \pi = -1</math> and
<math>\sin \pi = 0</math>, it follows that <math>e^{i\pi} = - 1</math>, which is equivalent to the equation
<math display="block">
e^{i \pi} + 1 = 0 .
</math>
This equation is most famous since it combines in a simple formula the three special numbers <math>\pi</math>, <math>e</math>, and <math>i</math> with the additive and multiplicative identities 0 and 1.
One of the most important features of the complex exponential function is that it provides an
alternative way of writing complex numbers. We have
{{proofcard|Theorem|theorem-4|Every complex number <math>z</math> can be written in the form <math>z = |z| e^{it}</math>, for some real number <math>t</math>.
Furthermore, if <math>z = x + iy</math> and <math>z \neq 0</math>, then <math>z = |z| e^{it}</math> if and only if
<math>\cos t = \frac{x}{|z|}</math> and <math>\sin t = \frac{y}{|z|}</math>.
|If <math>z = 0</math>, then <math>|z| = 0</math>, and so <math>0 = z = |z|e^{it}</math>, for every real number <math>t</math>.
Next we suppose that <math>z \neq 0</math>. Then <math>|z| \neq 0</math>, and <math>\frac{z}{|z|}</math> is defined and
lies on the unit circle because
<math display="block">
| \frac{z}{ |z|} | = \frac{|z|}{|z|} =1.
</math>
Hence there exists a real number <math>t</math> such that <math>\frac{z}{|z|} = e^{it}</math>, and this proves the first statement in the theorem. Suppose that <math>z = x + iy</math> and that <math>z \neq 0</math>.
If <math>z = |z|e^{it}</math>, then
<math display="block">
x + iy = |z|e^{it} = |z|(\cos t + i \sin t).
</math>
Two complex numbers are equal if and only if their real parts are equal and their imaginary
parts are equal. Hence <math>x = |z| \cos t</math> and <math>y =|z| \sin t</math>. Since <math>|z| \neq 0</math>, we conclude that <math>\cos t = \frac{x}{|z|}</math> and <math>\sin t = \frac{y}{|z|}</math> . Conversely, if we start from the last two equations, it follows that
<math display="block">
x + iy = |z|(\cos t + i \sin t).
</math>
The left side is equal to <math>z</math>, and the right side to <math>|z|e^{it}</math>. This completes the proof of the theorem.}}
A complex number written as <math>z = |z| e^{it}</math> is said to be in '''exponential form'''. The number <math>|z|</math> is, of course, the absolute value of <math>z</math>, and the number <math>t</math>
is called the '''angle''', or '''argument''', of <math>z</math>. The latter is not uniquely determined by <math>z</math>. Since the trigonometric functions <math>\sin</math> and <math>\cos</math> have period <math>2\pi</math>, it follows that
<math display="block">
z = |z|e^{it} = |z|e^{i(t +2\pi n)},
</math>
for every integer <math>n</math>.
Consider two complex numbers written in exponential form:
<math display="block">
z_{1} = |z_1| e^{it_1} \;\;\; \mbox{and} \;\;\; z_{2} = |z_{2}| e^{it_{2}}.
</math>
The product and ratio are given by
<math display="block">
z_{1}z_{2} = |z_1| |z_2| e^{it_1} e^{it_2}, \;\;\; \frac{z_1}{z_2} = \frac{|z_1|}{z_2} \frac{e^{it_1}}{e^{it_2}}.
</math>
Hence by formulas (7.2') and (7.3') for the product and ratio of exponentials, we have
<math display="block">
z_{1}z_{2} = |z_{1}| |z_{2}| e^{i (t_{1} + t_{2})},\;\;\; \frac{ z_{1}}{z_{2}} =  e^{i (t_{1} - t_{2})}.
</math>
''That is, two complex numbers are multiplied by multiplying their absolute values and adding
their angles. They are divided by dividing their absolute values and subtracting their angles.''
<span id="fig 6.21"/>
'''Example'''
Let <math>z_{1} = 3 + i4</math> and <math>z_{2} = -2i</math>. Express <math>z_{1}, z_{2}, z_{1}z_{2}</math>, and <math>\frac{z_{1}}{z_{2}}</math> in the exponential form <math>|z| e^{it}</math>, and plot the resulting arrows
in the complex plane. To begin with,
<math display="block">
\begin{eqnarray*}
|z_{1}| &=& \sqrt{3^2 + 4^2} = 5,\\
|z_{2}| &=& \sqrt{0^2 + (-2)^2} = 2.
\end{eqnarray*}
</math>
We next seek a real number <math>t_{1}</math> such that <math>\cos t_{1} = \frac{3}{5}</math> and
<math>\sin t_{1} = \frac{4}{5}</math>, and also a number <math>t_{2}</math> such that <math>\cos t_{2} = 0</math> and
<math>\sin t_{2} = - 1</math>. These are given by
<math display="block">
\begin{eqnarray*}
t_{1} &=& \arccos \frac{3}{5} = 0.93 \;\mbox{(approximately),} \\
t_{2} &=& \arcsin(-1) = - \frac{\pi}{2}.
\end{eqnarray*}
</math>
Then
<math display="block">
\begin{eqnarray*}
z_{1} &=& |z_{1}| e^{it_{1}} = 5e^{i(0.93)},\\
z_{2} &=& |z_{2}| e^{it_{2}} = 2e^{-i(\pi/2)}.
\end{eqnarray*}
</math>
Since <math>t_{1} + t_{2} = 0.93 - \frac{\pi}{2} = - 0.64</math> (approximately) and
<math>t_{1} - t_{2} = 0.93 - \Bigl(-\frac{\pi}{2}\Bigr) = 2.50</math> (approximately), we obtain
<math display="block">
\begin{eqnarray*}
              z_{1}z_{2} &=& |z_{1}| |z_{2}| e^{i(t_{1} + t_{2})} = 10 e^{-i(0.64)},  \\
\frac{z_1}{z_2} &=& \frac{|z_1|}{|z_2|} e^{i(t_{1} - t_{2})} = \frac{5}{2} e^{i(2.50)} .
\end{eqnarray*}
</math>
<div id="fig 6.21" class="d-flex justify-content-center">
[[File:guide_c5467_scanfig6_21.png | 400px | thumb |  ]]
</div>
The arrows representing <math>z_{1}, z_{2}, z_{1}z_{2}</math> and <math>\frac{z_{1}}{z_{2}}</math> are shown in Figure 21. To  locate these numbers geometrically using a ruler and protractor marked off in degrees, we would compute
<math display="block">
\begin{eqnarray*}
          t_{1} &=& 0.93 \;\;\mbox{radian} = 53 \;\mbox{degrees}, \\
          t_{2} &=& - \frac{\pi}{2} \; \;\mbox{radians} = - 90 \; \;\mbox{degrees},\\
t_{1} + t_{2} &=& - 0.64 \;\;\mbox{radian} = - 37 \; \;\mbox{degrees},\\
t_{1} - t_{2} &=& 2.50 \;\;\mbox{radians} = 143 \; \;\mbox{degrees}.
\end{eqnarray*}
</math>
Of course, we can find the real and imaginary parts of <math>z_{1}z_{2}</math> and <math>\frac{z_{1}}{z_{2}}</math> by the computations
<math display="block">
\begin{eqnarray*}
          z_{1}z_{2} &=& (3 + i4)(-2i) = 8 - i6, \\
\frac{z_{1}}{z_{2}} &=& \frac{ 3 + i4}{-2i} = \frac{ 3 + i4}{- 2i} \frac{2i}{2i}
= \frac{-8 + i6}{4} = -2 + i \frac{3}{2}  .
\end{eqnarray*}
</math>
If <math>z</math> is a complex number, then <math>z^n</math> can be defined inductively, for every nonnegative integer <math>n</math>, by
<span id{{=}}"eq6.7.1"/>
<math display="block">
\begin{equation}
z^0 = 1,
\label{eq6.7.1}
\end{equation}
</math>
<span id{{=}}"eq6.7.2"/>
<math display="block">
\begin{equation}
z^n = z(z^{n - 1}),\;\;\;\mbox{for}\; n  >  0. 
\label{eq6.7.2}
\end{equation}
</math>
Another useful property of the complex exponential function is
{{proofcard|Theorem|theorem-5|
<math display="block">
(e^z)^n = e^{nz},  \;\;\;\mbox{for every nonnegative integer}\; n.
</math>
|By induction. If <math>n = 0</math>, then <math>(e^z)^n = (e^z)^0</math>. Since <math>e^z</math> is a complex number, <math>(e^z)^0 = 1</math>, by equation (1). Moreover, in this case, <math>e^{nz} = e^{0z} = 1</math>, by (7.1'). Next suppose that <math>n  >  0</math>. By equation (2), we have <math>(e^z)^n = e^{z}(e^z)^{n-1}</math>, and by hypothesis of induction <math>(e^z)^{n-1} = e^{(n-1)z} = e^{(n - 1)z}</math>.  Hence, by (7.2'),
<math display="block">
(e^z)^n = e^{z}e^{(n-1)z} = e^{z+(n-1)z},
</math>
and, since <math>z + (n - 1)z = nz</math>, the proof is finished.}}
Let <math>z</math> be a complex number and <math>n</math> a positive integer. A complex number <math>w</math> is said to be an '''<math>\bf{n}</math><sup>th</sup> root''' of <math>z</math> if <math>w^n = z</math>. We shall now show that
{{proofcard|Theorem|theorem-6|If <math>z \neq 0</math>, then there exist <math>n</math> distinct <math>n</math>th roots of <math>z</math>.
|Let us write <math>z</math> in exponential form: <math>z = |z| e^{it}</math>. By <math>|z|^{1/n}</math> we mean the positive <math>n</math>th root of the real number <math>|z|</math> (which we assume exists and is unique). Consider the complex number
<math display="block">
w_0 = |z|^{1/n} e^{i(t/n)}.
</math>
It is easy to see that <math>w_0</math> is an nth root of <math>z</math>, since
<math display="block">
\begin{eqnarray*}
w_{0}^{n} &=&  (|z|^{1/n})^{n} (e^{i(t/n)})^n \\
              &=& |z|e^{it} \\
              &=& z .
\end{eqnarray*}
</math>
However, <math>w_0</math> is not the only <math>n</math>th root. We have already observed that
<math display="block">
z = |z| e^{it} = |z| e^{i(t + 2\pi k)},
</math>
for every integer <math>k</math>. If we set
<math display="block">
w_{k} = |z|^{1/n} e^{i\frac{i + 2\pi k}{n}} ,
</math>
then all these numbers are seen to be nth roots of <math>z</math>, since each one satisfies
the equation <math>w_{k}^{n} = z</math>. However, they are not all different. Note that <math>w_{k+1}</math> is
equal to the product <math>w_{k}e^{i(2\pi/n)}</math>. The angle of <math>e^{i(2\pi/n)}</math> is <math>\frac{2\pi}{n}</math> radians, and <math>\frac{2\pi}{n}</math> is one <math>n</math>th the entire circumference of the unit circle. Thus <math>w_{k+1}</math> is obtained from <math>w_k</math> by adding an angle of <math>\frac{2\pi}{n}</math> radians, or, equivalently, by rotating <math>w_k</math> exactly <math>\frac{1}{n}</math> of an entire rotation. If we begin with <math>w_k</math> and form <math>w_{k+1}, w_{k+2}, . . . </math> by successive rotations, when we get to <math>w_{k+n}</math> we will be back at <math>wk</math>, where we started. Thus there are only <math>n</math> distinct complex numbers among all the <math>w</math>'s. In particular,
<math display="block">
w_{k} = |z|^{1/n} e^{i\frac{i + 2\pi k}{n}}, \;\;\;  k = 0, . . ., n - 1,
</math>
are <math>n</math> distinct nth roots of <math>z</math>. This completes the proof.}}
An <math>n</math>th root of <math>z</math> is a solution of the complex polynomial equation <math>w^n - z = 0</math>. It is a well-known theorem of algebra that a polynomial equation of degree <math>n</math> cannot have more than <math>n</math> roots. Hence we can strengthen the statement of (7.8) to read that every nonzero complex number <math>z</math> has precisely <math>n</math> distinct nth roots.
<div id="fig 6.22" class="d-flex justify-content-center">
[[File:guide_c5467_scanfig6_22.png | 400px | thumb |  ]]
</div>
'''Example'''
Find the three cube roots of the complex number <math>z = 1 + i</math>, and plot them in the complex plane. Writing <math>z</math> in exponential form, we have
<math display="block">
z = \sqrt{2} e^{i(\pi/4)}
</math>
(see Figure 22). Hence the three cube roots are
<math display="block">
w_k = (\sqrt 2)^{1/3} e ^{i \frac{\pi/4 + 2\pi k}{3}}, \;\;\; k = 0, 1, 2.
</math>
Since <math>(\sqrt 2)^{1/3} = 2^{1/6} = 1.12</math> (approximately) and <math>\frac{1}{3} \Bigl(\frac{\pi}{4}\Bigr)</math> radius = 15 degrees, we see that <math>w_0</math> is the complex number lying on the circle of radius 1.12 about the origin and making an angle of 15 degrees with the positive <math>x</math>-axis. The other two roots lie on the same circle and have angles of 15 + 120 degrees and 15 + 240 degrees, respectively. The three roots are thus <math>\sqrt[6]{2} e^{i(\pi/12)}</math>, <math>\sqrt[6]{2} e^{i(3\pi/4)}</math>, and  <math>\sqrt[6]{2} e^{i(17 \pi/12)}</math>.
==General references==
{{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}}

Latest revision as of 20:51, 19 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Consider the function [math]\varphi[/math] defined by

[[math]] \varphi(x) = \cos x + i \sin x, [[/math]]

for every real number [math]x[/math]. This is a complex-valued function of a real variable. The domain of [math]\varphi[/math] is the set [math]R[/math] of all real numbers. For every real number [math]x[/math], we have

[[math]] |\varphi(x)| = \sqrt{\cos^{2}x + \sin^{2}x} = \sqrt{1} = 1. [[/math]]

It follows that [math]\varphi (x)[/math] is a point on the unit circle in the complex plane, i.e., the circle with center at the origin and radius 1. Conversely, every point on the unit circle is equal to [math](\cos x, \sin x)[/math], for some real number [math]x[/math], and we know that [math](\cos x, \sin x) = \cos x + i \sin x[/math]. It follows that the range of [math]\varphi[/math] is the unit circle. The function [math]\varphi[/math] has the following properties:

Theorem


[[math]] \begin{array}{lrcl} \mathrm{( 7.1 )}& \varphi (0) &=& 1. \\ \mathrm{( 7.2 )}& \varphi (a) \varphi (b) &=& \varphi (a + b).\\ \mathrm{( 7.3 )}& \frac{\varphi (a)}{\varphi (b)} &=& \varphi (a - b).\\ \mathrm{( 7.4 )}& \varphi( -a) &=& \frac{1}{\varphi (a)}. \end{array} [[/math]]


Show Proof

The proofs are completely straightforward. Thus (7.1) follows from the equations

[[math]] \varphi(0) = \cos 0 + i \sin 0 = \cos 0 = 1. [[/math]]
To prove (7.2), we write

[[math]] \begin{eqnarray*} \varphi (a) \varphi (b) &=& (\cos a + i \sin a)(\cos b + i \sin b)\\ &=& \cos a \cos b - \sin a \sin b + i(\sin a \cos b + \cos a \sin b). \end{eqnarray*} [[/math]]
The trigonometric identities for the cosine and sine of the sum of two numbers then imply that

[[math]] \varphi (a) \varphi (b) = \cos(a + b) + i \sin(a + b), [[/math]]
and the right side is by definition equal to [math]\varphi (a + b)[/math]. Thus (7.2) is proved. As a special case of (7.2), we have

[[math]] \varphi (a - b) \varphi (b) = \varphi (a - b + b) = \varphi (a). [[/math]]
On dividing by [math]\varphi(b)[/math], which is never zero, we get (7.3). The last result, (7.4), is obtained by taking [math]a = 0[/math] in (7.3) and then substituting 1 for [math]\varphi (0)[/math] in accordance with (7.1). Thus

[[math]] \begin{eqnarray*} \frac{\varphi (0)}{\varphi (b)} &=& \varphi (0 - b),\\ \frac{1}{\varphi (b)} &=& \varphi (-b). \end{eqnarray*} [[/math]]

The above four properties of [math]\varphi[/math] are also shared by the real-valued exponential function [math]\exp[/math] [we recall that [math]\exp(x) = e^{x}[/math]]. This fact suggests the possibility of extending the domain and range of [math]\exp[/math] into the complex plane. That is, it suggests that the functions [math]\varphi[/math] and [math]\exp[/math] can be combined to give a complex-valued exponential function of a complex variable which will have the property that when its domain is restricted to the real numbers, it is simply [math]\exp[/math]. We define such a function now. For every complex number [math]z = x + iy[/math], let [math]\mbox{Exp}[/math] be the function defined by

[[math]] \mbox{Exp}(z) = \exp(x) \varphi(y). [[/math]]

Thus

[[math]] \mbox{Exp}(z) = e^{x}(\cos y + i \sin y). [[/math]]

If [math]z = x + i0[/math], then [math]z = x[/math] and [math]\mbox{Exp}(z) = \exp(x) \varphi (0) = \exp(x)[/math]. Hence the function $\mbox{Exp}$ is an extension of the function $\exp$. It is a routine matter to show that the function [math]\mbox{Exp}[/math] has the exponential properties listed above for [math]\varphi[/math]. Following the practice for the real-valued exponential, we shall write [math]\mbox{Exp}(z)[/math] as [math]e^z[/math]. In this notation therefore, if [math]z = x + iy[/math], the definition reads

[[math]] e^z = e^{x}(\cos y + i \sin y). [[/math]]

The exponential properties are

Theorem


[[math]] \begin{array}{lrcl} \mathrm{( 7.1')}& e^0 &=& 1. \\ \mathrm{( 7.2')}& e^{z_{1}}e^{z_{2}} &=& e^{z_{1} + z_{2}}.\\ \mathrm{( 7.3')}& \frac{e^{z_1}}{e^{z_2}} &=& e^{z_{1} - z_{2}}.\\ \mathrm{( 7.4')}& \frac{1}{e^z} &=& e^{-z}. \end{array} [[/math]]


Show Proof

The proofs simply use the fact that the functions [math]\exp[/math] and [math]e^z[/math] separately have these properties. Thus

[[math]] e^0 = e^{0+i0} = \exp(0) \varphi(0) = 1 \cdot 1 = 1. [[/math]]
Letting [math]z_{1} = x_{1} + iy_{1}[/math] and [math]z_{2} = x_{2} + iy_{2}[/math], we have

[[math]] \begin{eqnarray*} e^{z_{1}}e^{z_{2}} &=& \exp(x_{1}) \varphi (y_{1}) \exp(x_{2})\varphi(y_{2})\\ &=& \exp(x_{1} + x_{2}) \varphi (y_{1} + y_{2}). \end{eqnarray*} [[/math]]
Since [math]z_{1} + z_{2} = (x_{1} + x_{2}) + i(y_{1} + y_{2})[/math], the right side is by definition equal to [math]\mbox{Exp}(z_{1} + z_{2})[/math], which is [math]e^{z_{1}+z_2}[/math]. The last two propositions, (7.3') and (7.4'), are corollaries of (7.1') and (7.2') in exactly the same way that (7.3) and (7.4) follow from (7.1) and (7.2).

If [math]x[/math] is an arbitrary real number, then

[[math]] e^{ix} = e^{0+ix} = e^{0}(\cos x + i \sin x). [[/math]]

Thus we have the equation

Theorem


[[math]] e^{ix} = \cos x + i \sin x, \;\;\;\mathrm{for~every~real~number}\; x. [[/math]]

Thus if [math]x[/math] is any real number, the complex number [math]e^{ix}[/math] is the ordered pair [math](\cos x, \sin x)[/math]. Hence [math]e^{ix}[/math] is the point on the unit circle obtained by starting at the complex number 1 and measuring along the circle at a distance equal to the absolute value of [math]x[/math], measuring in the counterclockwise direction if [math]x[/math] is positive and in the clockwise direction if it is negative (see Figure 20). In terms of angle, [math]x[/math] is the radian measure of the angle whose initial side is the positive half of the real axis and whose terminal side contains the arrow representing [math]z[/math]. Letting [math]x = \pi[/math] in (7.5), we get [math]e^{i\pi} = \cos \pi + i \sin \pi[/math]. Since [math]\cos \pi = -1[/math] and [math]\sin \pi = 0[/math], it follows that [math]e^{i\pi} = - 1[/math], which is equivalent to the equation

[[math]] e^{i \pi} + 1 = 0 . [[/math]]

This equation is most famous since it combines in a simple formula the three special numbers [math]\pi[/math], [math]e[/math], and [math]i[/math] with the additive and multiplicative identities 0 and 1. One of the most important features of the complex exponential function is that it provides an alternative way of writing complex numbers. We have

Theorem

Every complex number [math]z[/math] can be written in the form [math]z = |z| e^{it}[/math], for some real number [math]t[/math]. Furthermore, if [math]z = x + iy[/math] and [math]z \neq 0[/math], then [math]z = |z| e^{it}[/math] if and only if [math]\cos t = \frac{x}{|z|}[/math] and [math]\sin t = \frac{y}{|z|}[/math].


Show Proof

If [math]z = 0[/math], then [math]|z| = 0[/math], and so [math]0 = z = |z|e^{it}[/math], for every real number [math]t[/math]. Next we suppose that [math]z \neq 0[/math]. Then [math]|z| \neq 0[/math], and [math]\frac{z}{|z|}[/math] is defined and lies on the unit circle because

[[math]] | \frac{z}{ |z|} | = \frac{|z|}{|z|} =1. [[/math]]
Hence there exists a real number [math]t[/math] such that [math]\frac{z}{|z|} = e^{it}[/math], and this proves the first statement in the theorem. Suppose that [math]z = x + iy[/math] and that [math]z \neq 0[/math]. If [math]z = |z|e^{it}[/math], then

[[math]] x + iy = |z|e^{it} = |z|(\cos t + i \sin t). [[/math]]
Two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal. Hence [math]x = |z| \cos t[/math] and [math]y =|z| \sin t[/math]. Since [math]|z| \neq 0[/math], we conclude that [math]\cos t = \frac{x}{|z|}[/math] and [math]\sin t = \frac{y}{|z|}[/math] . Conversely, if we start from the last two equations, it follows that

[[math]] x + iy = |z|(\cos t + i \sin t). [[/math]]
The left side is equal to [math]z[/math], and the right side to [math]|z|e^{it}[/math]. This completes the proof of the theorem.

A complex number written as [math]z = |z| e^{it}[/math] is said to be in exponential form. The number [math]|z|[/math] is, of course, the absolute value of [math]z[/math], and the number [math]t[/math] is called the angle, or argument, of [math]z[/math]. The latter is not uniquely determined by [math]z[/math]. Since the trigonometric functions [math]\sin[/math] and [math]\cos[/math] have period [math]2\pi[/math], it follows that

[[math]] z = |z|e^{it} = |z|e^{i(t +2\pi n)}, [[/math]]

for every integer [math]n[/math]. Consider two complex numbers written in exponential form:

[[math]] z_{1} = |z_1| e^{it_1} \;\;\; \mbox{and} \;\;\; z_{2} = |z_{2}| e^{it_{2}}. [[/math]]

The product and ratio are given by

[[math]] z_{1}z_{2} = |z_1| |z_2| e^{it_1} e^{it_2}, \;\;\; \frac{z_1}{z_2} = \frac{|z_1|}{z_2} \frac{e^{it_1}}{e^{it_2}}. [[/math]]

Hence by formulas (7.2') and (7.3') for the product and ratio of exponentials, we have

[[math]] z_{1}z_{2} = |z_{1}| |z_{2}| e^{i (t_{1} + t_{2})},\;\;\; \frac{ z_{1}}{z_{2}} = e^{i (t_{1} - t_{2})}. [[/math]]

That is, two complex numbers are multiplied by multiplying their absolute values and adding their angles. They are divided by dividing their absolute values and subtracting their angles.

Example

Let [math]z_{1} = 3 + i4[/math] and [math]z_{2} = -2i[/math]. Express [math]z_{1}, z_{2}, z_{1}z_{2}[/math], and [math]\frac{z_{1}}{z_{2}}[/math] in the exponential form [math]|z| e^{it}[/math], and plot the resulting arrows in the complex plane. To begin with,


[[math]] \begin{eqnarray*} |z_{1}| &=& \sqrt{3^2 + 4^2} = 5,\\ |z_{2}| &=& \sqrt{0^2 + (-2)^2} = 2. \end{eqnarray*} [[/math]]


We next seek a real number [math]t_{1}[/math] such that [math]\cos t_{1} = \frac{3}{5}[/math] and [math]\sin t_{1} = \frac{4}{5}[/math], and also a number [math]t_{2}[/math] such that [math]\cos t_{2} = 0[/math] and [math]\sin t_{2} = - 1[/math]. These are given by

[[math]] \begin{eqnarray*} t_{1} &=& \arccos \frac{3}{5} = 0.93 \;\mbox{(approximately),} \\ t_{2} &=& \arcsin(-1) = - \frac{\pi}{2}. \end{eqnarray*} [[/math]]


Then

[[math]] \begin{eqnarray*} z_{1} &=& |z_{1}| e^{it_{1}} = 5e^{i(0.93)},\\ z_{2} &=& |z_{2}| e^{it_{2}} = 2e^{-i(\pi/2)}. \end{eqnarray*} [[/math]]


Since [math]t_{1} + t_{2} = 0.93 - \frac{\pi}{2} = - 0.64[/math] (approximately) and [math]t_{1} - t_{2} = 0.93 - \Bigl(-\frac{\pi}{2}\Bigr) = 2.50[/math] (approximately), we obtain

[[math]] \begin{eqnarray*} z_{1}z_{2} &=& |z_{1}| |z_{2}| e^{i(t_{1} + t_{2})} = 10 e^{-i(0.64)}, \\ \frac{z_1}{z_2} &=& \frac{|z_1|}{|z_2|} e^{i(t_{1} - t_{2})} = \frac{5}{2} e^{i(2.50)} . \end{eqnarray*} [[/math]]


The arrows representing [math]z_{1}, z_{2}, z_{1}z_{2}[/math] and [math]\frac{z_{1}}{z_{2}}[/math] are shown in Figure 21. To locate these numbers geometrically using a ruler and protractor marked off in degrees, we would compute

[[math]] \begin{eqnarray*} t_{1} &=& 0.93 \;\;\mbox{radian} = 53 \;\mbox{degrees}, \\ t_{2} &=& - \frac{\pi}{2} \; \;\mbox{radians} = - 90 \; \;\mbox{degrees},\\ t_{1} + t_{2} &=& - 0.64 \;\;\mbox{radian} = - 37 \; \;\mbox{degrees},\\ t_{1} - t_{2} &=& 2.50 \;\;\mbox{radians} = 143 \; \;\mbox{degrees}. \end{eqnarray*} [[/math]]

Of course, we can find the real and imaginary parts of [math]z_{1}z_{2}[/math] and [math]\frac{z_{1}}{z_{2}}[/math] by the computations

[[math]] \begin{eqnarray*} z_{1}z_{2} &=& (3 + i4)(-2i) = 8 - i6, \\ \frac{z_{1}}{z_{2}} &=& \frac{ 3 + i4}{-2i} = \frac{ 3 + i4}{- 2i} \frac{2i}{2i} = \frac{-8 + i6}{4} = -2 + i \frac{3}{2} . \end{eqnarray*} [[/math]]


If [math]z[/math] is a complex number, then [math]z^n[/math] can be defined inductively, for every nonnegative integer [math]n[/math], by

[[math]] \begin{equation} z^0 = 1, \label{eq6.7.1} \end{equation} [[/math]]


[[math]] \begin{equation} z^n = z(z^{n - 1}),\;\;\;\mbox{for}\; n \gt 0. \label{eq6.7.2} \end{equation} [[/math]]


Another useful property of the complex exponential function is

Theorem


[[math]] (e^z)^n = e^{nz}, \;\;\;\mbox{for every nonnegative integer}\; n. [[/math]]


Show Proof

By induction. If [math]n = 0[/math], then [math](e^z)^n = (e^z)^0[/math]. Since [math]e^z[/math] is a complex number, [math](e^z)^0 = 1[/math], by equation (1). Moreover, in this case, [math]e^{nz} = e^{0z} = 1[/math], by (7.1'). Next suppose that [math]n \gt 0[/math]. By equation (2), we have [math](e^z)^n = e^{z}(e^z)^{n-1}[/math], and by hypothesis of induction [math](e^z)^{n-1} = e^{(n-1)z} = e^{(n - 1)z}[/math]. Hence, by (7.2'),

[[math]] (e^z)^n = e^{z}e^{(n-1)z} = e^{z+(n-1)z}, [[/math]]
and, since [math]z + (n - 1)z = nz[/math], the proof is finished.

Let [math]z[/math] be a complex number and [math]n[/math] a positive integer. A complex number [math]w[/math] is said to be an [math]\bf{n}[/math]th root of [math]z[/math] if [math]w^n = z[/math]. We shall now show that

Theorem

If [math]z \neq 0[/math], then there exist [math]n[/math] distinct [math]n[/math]th roots of [math]z[/math].


Show Proof

Let us write [math]z[/math] in exponential form: [math]z = |z| e^{it}[/math]. By [math]|z|^{1/n}[/math] we mean the positive [math]n[/math]th root of the real number [math]|z|[/math] (which we assume exists and is unique). Consider the complex number

[[math]] w_0 = |z|^{1/n} e^{i(t/n)}. [[/math]]
It is easy to see that [math]w_0[/math] is an nth root of [math]z[/math], since

[[math]] \begin{eqnarray*} w_{0}^{n} &=& (|z|^{1/n})^{n} (e^{i(t/n)})^n \\ &=& |z|e^{it} \\ &=& z . \end{eqnarray*} [[/math]]
However, [math]w_0[/math] is not the only [math]n[/math]th root. We have already observed that

[[math]] z = |z| e^{it} = |z| e^{i(t + 2\pi k)}, [[/math]]
for every integer [math]k[/math]. If we set

[[math]] w_{k} = |z|^{1/n} e^{i\frac{i + 2\pi k}{n}} , [[/math]]
then all these numbers are seen to be nth roots of [math]z[/math], since each one satisfies the equation [math]w_{k}^{n} = z[/math]. However, they are not all different. Note that [math]w_{k+1}[/math] is equal to the product [math]w_{k}e^{i(2\pi/n)}[/math]. The angle of [math]e^{i(2\pi/n)}[/math] is [math]\frac{2\pi}{n}[/math] radians, and [math]\frac{2\pi}{n}[/math] is one [math]n[/math]th the entire circumference of the unit circle. Thus [math]w_{k+1}[/math] is obtained from [math]w_k[/math] by adding an angle of [math]\frac{2\pi}{n}[/math] radians, or, equivalently, by rotating [math]w_k[/math] exactly [math]\frac{1}{n}[/math] of an entire rotation. If we begin with [math]w_k[/math] and form [math]w_{k+1}, w_{k+2}, . . . [/math] by successive rotations, when we get to [math]w_{k+n}[/math] we will be back at [math]wk[/math], where we started. Thus there are only [math]n[/math] distinct complex numbers among all the [math]w[/math]'s. In particular,

[[math]] w_{k} = |z|^{1/n} e^{i\frac{i + 2\pi k}{n}}, \;\;\; k = 0, . . ., n - 1, [[/math]]
are [math]n[/math] distinct nth roots of [math]z[/math]. This completes the proof.

An [math]n[/math]th root of [math]z[/math] is a solution of the complex polynomial equation [math]w^n - z = 0[/math]. It is a well-known theorem of algebra that a polynomial equation of degree [math]n[/math] cannot have more than [math]n[/math] roots. Hence we can strengthen the statement of (7.8) to read that every nonzero complex number [math]z[/math] has precisely [math]n[/math] distinct nth roots.

Example

Find the three cube roots of the complex number [math]z = 1 + i[/math], and plot them in the complex plane. Writing [math]z[/math] in exponential form, we have

[[math]] z = \sqrt{2} e^{i(\pi/4)} [[/math]]

(see Figure 22). Hence the three cube roots are

[[math]] w_k = (\sqrt 2)^{1/3} e ^{i \frac{\pi/4 + 2\pi k}{3}}, \;\;\; k = 0, 1, 2. [[/math]]

Since [math](\sqrt 2)^{1/3} = 2^{1/6} = 1.12[/math] (approximately) and [math]\frac{1}{3} \Bigl(\frac{\pi}{4}\Bigr)[/math] radius = 15 degrees, we see that [math]w_0[/math] is the complex number lying on the circle of radius 1.12 about the origin and making an angle of 15 degrees with the positive [math]x[/math]-axis. The other two roots lie on the same circle and have angles of 15 + 120 degrees and 15 + 240 degrees, respectively. The three roots are thus [math]\sqrt[6]{2} e^{i(\pi/12)}[/math], [math]\sqrt[6]{2} e^{i(3\pi/4)}[/math], and [math]\sqrt[6]{2} e^{i(17 \pi/12)}[/math].

General references

Doyle, Peter G. (2008). "Crowell and Slesnick's Calculus with Analytic Geometry" (PDF). Retrieved Oct 29, 2024.