guide:3e424a0386: Difference between revisions
No edit summary |
mNo edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
<div class="d-none"><math> | |||
\newcommand{\ex}[1]{\item } | |||
\newcommand{\sx}{\item} | |||
\newcommand{\x}{\sx} | |||
\newcommand{\sxlab}[1]{} | |||
\newcommand{\xlab}{\sxlab} | |||
\newcommand{\prov}[1] {\quad #1} | |||
\newcommand{\provx}[1] {\quad \mbox{#1}} | |||
\newcommand{\intext}[1]{\quad \mbox{#1} \quad} | |||
\newcommand{\R}{\mathrm{\bf R}} | |||
\newcommand{\Q}{\mathrm{\bf Q}} | |||
\newcommand{\Z}{\mathrm{\bf Z}} | |||
\newcommand{\C}{\mathrm{\bf C}} | |||
\newcommand{\dt}{\textbf} | |||
\newcommand{\goesto}{\rightarrow} | |||
\newcommand{\ddxof}[1]{\frac{d #1}{d x}} | |||
\newcommand{\ddx}{\frac{d}{dx}} | |||
\newcommand{\ddt}{\frac{d}{dt}} | |||
\newcommand{\dydx}{\ddxof y} | |||
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} | |||
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} | |||
\newcommand{\dist}{\mathrm{distance}} | |||
\newcommand{\arccot}{\mathrm{arccot\:}} | |||
\newcommand{\arccsc}{\mathrm{arccsc\:}} | |||
\newcommand{\arcsec}{\mathrm{arcsec\:}} | |||
\newcommand{\arctanh}{\mathrm{arctanh\:}} | |||
\newcommand{\arcsinh}{\mathrm{arcsinh\:}} | |||
\newcommand{\arccosh}{\mathrm{arccosh\:}} | |||
\newcommand{\sech}{\mathrm{sech\:}} | |||
\newcommand{\csch}{\mathrm{csch\:}} | |||
\newcommand{\conj}[1]{\overline{#1}} | |||
\newcommand{\mathds}{\mathbb} | |||
</math></div> | |||
Products of trigonometric functions, powers of trigonometric functions, | |||
and products of their powers are all functions which we need to integrate | |||
at various times. In this section techniques will be developed for finding | |||
antiderivatives of the commonly encountered functions of these types. | |||
The first and simplest occur with the integrals | |||
<span id{{=}}"eq7.2.1"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\begin{array}{l} | |||
\int \cos ax \cos bx dx, \\ | |||
\int \sin ax \sin bx dx, \\ | |||
\int \sin ax \cos bx dx, \;\;\;\mbox{in which}\; a \neq b. | |||
\end{array} | |||
\label{eq7.2.1} | |||
\end{equation} | |||
</math> | |||
None of these can be integrated directly, but eaeh of the three integrands is a term in the expansions of <math>\cos(ax + bx)</math> and <math>\cos(ax - bx)</math> or in the expansions of <math>\sin(ax + bx)</math> and <math>\sin(ax - bx)</math>. We can use these addition formulas to change products to sums or differences, and the latter ean be integrated easily. | |||
'''Example''' | |||
Integrate: | |||
<math display="block"> | |||
\mbox{(a)}\;\;\; \int \sin 8x \sin 3x dx, \;\;\;\mbox{(b)}\;\;\; \int \sin 7x \cos 2x dx. | |||
</math> | |||
The integrand <math>\sin 8x \sin 3x</math> in (a) is one term in the expansion of <math>\cos(8x + 3x)</math> and also in the | |||
expansion of <math>\cos(8x - 3x)</math>. That is, we have | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\cos(8x + 3x) &=& \cos 8x \cos 3x - \sin 8x \sin 3x,\\ | |||
\cos(8x - 3x) &=& \cos 8x \cos 3x + \sin 8x \sin 3x. | |||
\end{eqnarray*} | |||
</math> | |||
Subtracting the first from the second, we get | |||
<math display="block"> | |||
\cos(8x - 3x) - \cos(8x + 3x) = 2 \sin 8x \sin 3x. | |||
</math> | |||
Hence, since <math>8x - 3x = 5x</math> and <math>8x + 3x = 11x</math>, | |||
we obtain | |||
<math display="block"> | |||
\sin 8x \sin 3x = 2 (\cos 5x - \cos 11x), | |||
</math> | |||
and so | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int \sin 8x \sin 3x dx &=& \frac{1}{2} \int (\cos 5x - \cos 11x) dx\\ | |||
&=& \frac{1}{10} \sin 5x - \frac{1}{22} \sin 11x + c. | |||
\end{eqnarray*} | |||
</math> | |||
For the integral in (b), we use the formulas for the sine of the sum and | |||
difference of two numbers: | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\sin(7x + 2x) &=& \sin 7x \cos 2x + \cos 7x \sin 2x, \\ | |||
\sin(7x - 2x) &=& \sin 7x \cos 2x - \cos 7x \sin 2x. | |||
\end{eqnarray*} | |||
</math> | |||
Adding, we have | |||
<math display="block"> | |||
\sin(7x + 2x) + \sin(7x - 2x) = 2 \sin 7x \cos 2x. | |||
</math> | |||
Hence | |||
<math display="block"> | |||
\sin 7x \cos 2x = \frac{1}{2} (\sin 9x + \sin 5x), | |||
</math> | |||
and | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int \sin 7x \cos 2x dx &=& \frac{1}{2}\int (\sin 9x + \sin 5x) dx\\ | |||
&=& - \frac{1}{18} \cos 9x - \frac{1}{10} \cos 5x + c. | |||
\end{eqnarray*} | |||
</math> | |||
It should be clear that, using the formulas for the cosine and sine of the sum and difference of two numbers as in Example 1, we can readily evaluate any integral of the type given in equations (1). | |||
We next consider integrals of the type | |||
<span id{{=}}"eq7.2.2"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\int \cos^{m} x \sin^{n}x dx, | |||
\label{eq7.2.2} | |||
\end{equation} | |||
</math> | |||
''in which at least one of the exponents m and n is an odd positive integer'' | |||
(the other exponent need only be a real number). Suppose that <math>m = 2k + 1</math>, | |||
where <math>k</math> is a nonnegative integer. Then | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\cos^{m} x \sin^{n} x &=& \cos^{2k+1}x \sin^{n}x\\ | |||
&=& (\cos^{2}x)^{k} \sin^{n} x \cos x. | |||
\end{eqnarray*} | |||
</math> | |||
Using the identity <math>\cos^{2}x = 1 - \sin^{2}x</math>, we obtain | |||
<math display="block"> | |||
\int \cos^{m}x \sin^{n}x dx = \int (1 - \sin^{2}x)^{k} \sin^{n}x \cos x dx. | |||
</math> | |||
The factor <math>(1 - \sin^{2}x)^k</math> can be expanded by the Binomial Theorem, | |||
and the result is that <math>\int \cos^{m}x \sin^{n}x dx</math> can be written as a sum of constant multiples of integrals of the form <math>\int \sin^{q}x \cos x dx</math>. Since | |||
<math display="block"> | |||
\int \sin^{q} x \cos x dx = \{ \begin{array}{ll} | |||
\frac{1}{q + 1} \sin ^{q + 1} x + c & \;\;\; \mbox{if}\; q \neq -1,\\ | |||
\ln |\sin x| + c & \;\;\; \mbox{if}\; q = - 1, | |||
\end{array} | |||
</math> | |||
it follows that <math>\int \cos^{m}x \sin^{n}x dx</math> can be readily evaluated. | |||
An entirely analogous argument follows if the exponent <math>n</math> is an odd positive integer. | |||
'''Example''' | |||
Integrate | |||
<math display="block"> | |||
\mbox{(a)}\;\;\; \int \cos^{3}4x dx, \;\;\; \mbox{(b)}\;\;\; \int \sin^{5}x \cos^{4}x dx. | |||
</math> | |||
The integral in (a) illustrates that the method just described is applicable to odd positive | |||
integer powers of the sine or cosine (i.e., either <math>m</math> or <math>n</math> may be zero). We obtain | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int \cos^{3}4x dx &=& \int \cos^{2}4x \cos 4x dx\\ | |||
&=& \int(1- \sin^{2}4x) \cos 4x dx \\ | |||
&=& \int \cos 4x dx - \int \sin^{2}4x \cos 4x dx\\ | |||
&=& \frac{1}{4} \sin 4x - \frac{1}{12} \sin^{3} 4x + c. | |||
\end{eqnarray*} | |||
</math> | |||
In (b) it is the exponent of the sine which is an odd positive | |||
integer. | |||
Hence | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int \sin^{5}x \cos^{4}x dx &=& \int (\sin^{2} x)^{2} \cos^{4}x \sin x dx\\ | |||
&=& \int (1- \cos^{2}x)^{2} \cos^{4}x \sin x dx\\ | |||
&=& \int (1 - 2 \cos^{2} x + \cos^{4}x) \cos^{4}x \sin x dx\\ | |||
&=& \int \cos^{4}x \sin x dx - 2\int \cos^{6}x \sin x dx + \int \cos^{8}x \sin x dx\\ | |||
&=& \frac{1}{5} \cos^{5}x + \frac{2}{7} \cos^{7}x - \frac{1}{9} \cos^{9}x + c. | |||
\end{eqnarray*} | |||
</math> | |||
The third type of integral we consider consists of those of the form | |||
<span id{{=}}"eq7.2.3"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\int \cos^{m}x \sin^{n}x dx | |||
\label{eq7.2.3} | |||
\end{equation} | |||
</math> | |||
''in which both m and n are even nonnegative integers.'' These functions are not so simple to integrate as those containing an odd power. We first consider the special case in which either <math>m = 0</math> or <math>n = 0</math>. The simplest nontrivial examples are the two integrals | |||
<math>\int \cos^{2}x dx</math> and <math>\int \sin^{2}x dx</math>, which can be integrated by means of the identities | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\cos^{2}x &=& \frac{1}{2}(1 + \cos 2x), \\ | |||
\sin^{2}x &=& \frac{1}{2}(1- \cos 2x). | |||
\end{eqnarray*} | |||
</math> | |||
These are useful enough to be worth memorizing, but they can also be derived quickly by | |||
addition and subtraction from the two more primitive identities | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
1 &=& \cos^{2}x + \sin^{2}x,\\ | |||
\cos 2x &=& \cos^{2}x - \sin^{2}x. | |||
\end{eqnarray*} | |||
</math> | |||
Evaluation of the two integrals is now a simple matter. We get | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int \cos^{2}x dx &=& \frac{1}{2} \int (1 + \cos 2x) dx = \frac{x}{2} + \frac{1}{4} \sin 2x + c, \\ | |||
\int \sin^{2}x dx &=& \frac{1}{2} \int (1 - \cos 2x) dx = \frac{x}{2} - \frac{1}{4} \sin 2x + c. | |||
\end{eqnarray*} | |||
</math> | |||
Going on to the higher powers, consider the integral <math>\int \cos^{2i} x dx</math>, where <math>i</math> is an arbitrary positive integer. We write | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\cos^{2i} x = (\cos^{2}x)^i &=& [\frac{1}{2}(1 + \cos 2x)]^i\\ | |||
&=& \frac{1}{2i} (1 + \cos 2x)^{i}. | |||
\end{eqnarray*} | |||
</math> | |||
The factor <math>(1 + \cos 2x)^i</math> can be expanded by the Binomial Theorem. The result is that <math>\cos^{2i}x</math> can be written as a surli of constant multiples of functions of the form <math>\cos^{j}2x</math>, and in each of these <math>j < 2i</math>. The terms in this sum for which <math>j</math> is odd are all of the type already shown to be integrable. The terms for which <math>j</math> is even are of the type now under consideration. However, the exponents <math>j</math> are all smaller than the original power <math>2i</math>. For each function <math>\cos^{j}2x</math> with <math>j</math> even and nonzero, we repeat the process just described. Again, the resulting even powers of the cosine will be reduced. | |||
By repetition of these expansions, the even powers of the cosine can eventually all be reduced to zero. It follows that, although the process may be a tedious one, the integral <math>\int \cos^{2i}xdx</math> can always be evaluated. The argument for <math>\int \sin^{2i}x dx</math> is entirely analogous. | |||
'''Example''' | |||
Integrate <math>\int \sin^{6}2x dx</math>. We write | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\sin^{6}2x | |||
&=& (\sin^{2} 2x)^3 = [\frac{1}{2}(1 - \cos4x)]^3\\ | |||
&=& \frac{1}{8}(1 - 3 \cos 4x + 3 \cos^{2}4x - \cos^{3} 4x)\\ | |||
&=& \frac{1}{8} [ 1 - 3 \cos 4x + \frac{3}{2} ( 1 + \cos 8x) - \cos^{3} 4x] \\ | |||
&=& \frac{5}{16} - \frac{3}{8} \cos4x + \frac{3}{16} \cos 8x - \frac{1}{8} \cos^{3}4x. | |||
\end{eqnarray*} | |||
</math> | |||
Hence | |||
<math display="block"> | |||
\int \sin^{6}2x dx = \frac{5x}{16} - \frac{3}{32} \sin 4x + \frac{3}{128} \sin 8x | |||
- \frac{1}{8} \int \cos^{3} 4x dx. | |||
</math> | |||
In Example 2 we have shown that | |||
<math display="block"> | |||
\int \cos^{3}4x dx = \frac{1}{4} \sin 4x - \frac{1}{12} \sin^{3} 4x + c. | |||
</math> | |||
We conclude that | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int \sin^{6}2x dx &=& \frac{5x}{16} - \frac{3}{32} \sin 4x + \frac{3}{128} \sin 8x - \frac{1}{32} \sin 4x + \frac{1}{96} \sin^{3}4x + c \\ | |||
&=& \frac{5x}{16} - \frac{1}{8} \sin 4x + \frac{3}{128} \sin 8x + \frac{1}{96} \sin^{3}4x + c. | |||
\end{eqnarray*} | |||
</math> | |||
Returning to the general case, we can now integrate <math>\int \cos^{m}x \sin^{n}xdx</math>, where <math>m</math> and <math>n</math> are arbitrary nonnegative even integers. For, setting <math>m = 2i</math> and <math>n = 2j</math>, we can write | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\cos^{m}x \sin^{n}x &=& \cos^{2i} x (\sin^{2} x)^j \\ | |||
&=& \cos^{2i} x(1 - \cos^{2} x)^j. | |||
\end{eqnarray*} | |||
</math> | |||
When expanded, the right side is a sum of constant multiples of even powers of | |||
<math>\cos x</math>, and we have shown that each of these can be integrated. This completes the argument. Actually, if neither <math>m</math> nor <math>n</math> is zero, we can save time by using the identity | |||
<math display="block"> | |||
\sin x \cos x = \frac{1}{2} \sin 2x, | |||
</math> | |||
as illustrated in the following example. | |||
'''Example''' | |||
Integrate <math>\int \cos^{4}x \sin^{2}x dx</math>. Since <math>\sin^{2}x</math> is the factor with the smaller exponent, we write | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\cos^4x \sin^{2}x &=& \cos^{2}x (\cos^{2}x \sin^{2}x)\\ | |||
&=& \cos^{2}x (\sin x \cos x)^2\\ | |||
&=& [ \frac{1}{2} ( 1 + \cos 2x)]( \frac{1}{2} \sin 2x)^2. | |||
\end{eqnarray*} | |||
</math> | |||
Expanding, we get | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\cos^{4}x \sin^{2}x &=& \frac{1}{8}(1 + \cos 2x) \sin^{2}2x\\ | |||
&=& \frac{1}{8} \sin^{2}2x + \frac{1}{8} \sin^{2}2x \cos2x\\ | |||
&=& \frac{1}{16} ( 1 - \cos 4x) + \frac{1}{8} \sin^{2}2x \cos 2x. | |||
\end{eqnarray*} | |||
</math> | |||
Hence | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int \cos^{4}x \sin^{2}x dx &=& \frac{1}{16} \int dx - \frac{1}{16} \int \cos 4x dx | |||
+ \frac{1}{8} \int \sin^{2}2x \cos 2x dx \\ | |||
&=& \frac{x}{16} - \frac{1}{64} \sin 4x + \frac{1}{48} \sin^{3}2x + c. | |||
\end{eqnarray*} | |||
</math> | |||
An important alternative method for integrating positive integer powers of the sine and cosine | |||
is by means of recursion (or reduction) formulas. In Section 1 [see (1.2), page 359], such a | |||
formula was developed, expressing <math>\int \cos^{n}x dx</math> in terms of <math>\int \cos^{n-2}x dx</math>. | |||
Following the derivation, <math>\int \cos^{5} 2x dx</math> is evaluated with two applications of the formula. | |||
A similar reduction formula for <math>\int \sin^{n}x dx</math> was given in Problem 4, page 361. | |||
Certainly no one should memorize these formulas, but, if they are available, they undoubtedly provide the most automatic way of performing the integration. | |||
\medskip | |||
We next turn to the problem of evaluating | |||
<span id{{=}}"eq7.2.4"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\int \tan^{n}x dx, | |||
\label{eq7.2.4} | |||
\end{equation} | |||
</math> | |||
where <math>n</math> is an arbitrary positive integer. For <math>n = 1</math>, the integral is an elementary one: | |||
<math display="block"> | |||
\int \tan x dx = \int \frac{\sin x}{\cos x} dx = | |||
\left \{ \begin{array}{r} | |||
- \ln |\cos x| + c,\\ | |||
\ln |\sec x| + c. | |||
\end{array} | |||
\right. | |||
</math> | |||
For <math>n \geq 2</math>, there is a reduction formula, which is easily derived as follows. | |||
Using the identity <math>\sec^{2} x - 1 = \tan^{2}x</math>, we have | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int \tan^{n}x dx &=& \int \tan^{n-2}x \tan^{2}x dx\\ | |||
&=& \int \tan^{n-2} x (\sec^{2}x - 1)dx\\ | |||
&=& \int \tan^{n-2}x \sec^{2}x dx - \int \tan^{n-2}x dx. | |||
\end{eqnarray*} | |||
</math> | |||
Since <math>\frac{d}{dx} \tan x = \sec^{2}x</math>, the first integral on the right is equal to | |||
<math display="block"> | |||
\int \tan^{n-2} x d \tan x. | |||
</math> | |||
Hence we obtain | |||
{{proofcard|Theorem|theorem-1| | |||
<math display="block"> | |||
\int \tan^{n} x dx = \frac{1}{n -1} \tan^{n-1} x - \int \tan^{n -2}x dx. | |||
</math>|}} | |||
However, we generally perform such integrations without explicit use of the reduction formula (2.1). We simply carry out this technique of replacing <math>\tan^{2}x</math> by | |||
<math>\sec^{2}x - 1</math> as often as necessary. | |||
'''Example''' | |||
Integrate <math>\tan 5x dx</math>. Factoring and substituting, we get | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int \tan^{5}x dx &=& \int \tan^{3}x \tan^{2}x dx \\ | |||
&=& \int \tan^{3}x(\sec^{2}x - 1)dx \\ | |||
&=& \int \tan^{3}x \sec^{2}x dx - \int \tan^{3}x dx \\ | |||
&=& \frac{1}{4} \tan^{4}x - \int \tan x (\sec^{2} x - 1 ) dx\\ | |||
&=& \frac{1}{4} \tan^{4} x - \int \tan x \sec^{2}x dx + \int \tan x dx \\ | |||
&=& \frac{1}{4} \tan^{4} x - \frac{1}{2} \tan^{2} x + \ln |\sec x| + c. | |||
\end{eqnarray*} | |||
</math> | |||
The difficulty in evaluating the integral | |||
<span id{{=}}"eq7.2.5"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\int \sec^{n}xdx, | |||
\label{eq7.2.5} | |||
\end{equation} | |||
</math> | |||
where <math>n</math> is a positive integer, depends on whether <math>n</math> is even or odd. If <math>n = 2i</math>, for some positive integer <math>i</math>, then | |||
<math display="block"> | |||
\sec^{n}x = (\sec^{2}x)^{i-1} \sec^{2} x = (1 + \tan^{2}x)^{i-1} \sec^{2}x. | |||
</math> | |||
Hence, if <math>n</math> is even, <math>\sec^{n}x</math> can be expanded into a sum of multiples of integrals of the form | |||
<math display="block"> | |||
\int \tan^{j} x \sec^{2} x dx = \frac{1}{j + 1} \tan^{j + 1} x + c. | |||
</math> | |||
If <math>n</math> is odd, the problem is not so simple. We shall use the reduction formula | |||
{{proofcard|Theorem|theorem-2| | |||
<math display="block"> | |||
\int \sec^{n} x dx = \frac{\sec^{n-2} x \tan x}{n - 1} + \frac{n - 2}{n - 1} \int \sec^{n-2} xdx. | |||
</math>|}} | |||
This formula is derived by integration by parts [see Problem 6(b), page 362] and is | |||
applicable for any integer <math>n \geq 2</math>, whether even or odd. With a finite number of applications, <math>\int \sec^{n} x dx</math> can therefore be reduced to an expression in which the only remaining integral is <math>\int dx</math> or <math>\int \sec x dx</math>, according as <math>n</math> is even or odd. Hence, if <math>n</math> is odd, we need to know <math>\int \sec x dx</math>. An ingenious method of integration is to consider the pair of functions <math>\sec x</math> and <math>\tan x</math> and to observe that the derivative of each one is equal to <math>\sec x</math> times the other. Writing this fact in terms of differentials, we have | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
d \sec x &=& \sec x \tan x dx,\\ | |||
d \tan x &=& \sec^{2}x dx = \sec x \sec x dx. | |||
\end{eqnarray*} | |||
</math> | |||
Adding and factoring, we obtain | |||
<math display="block"> | |||
d(\sec x + \tan x) = \sec x(\tan x + \sec x) dx. | |||
</math> | |||
Hence | |||
<math display="block"> | |||
\sec x dx = \frac{d(\sec x + \tan x)}{\sec x + \tan x}, | |||
</math> | |||
from which follows the useful formula | |||
{{proofcard|Theorem|theorem-3| | |||
<math display="block"> | |||
\int \sec x dx = \ln |\sec x + \tan x| + c. | |||
</math>|}} | |||
'''Example''' | |||
Integrate <math>\int \sec^{5} x dx</math>. Using the reduction formula (2.2) twice, we have | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int \sec^{5}x dx &=& \frac{\sec^{3} x \tan x}{4} + \frac{3}{4} \int \sec^{3}x dx\\ | |||
&=& \frac{\sec^{3}x \tan x}{4} + \frac{3}{4} \Bigl( \frac{\sec x \tan x}{2} + \frac{1}{2} \int \sec x dx \Bigr). | |||
\end{eqnarray*} | |||
</math> | |||
From this and (2.3), we conclude that | |||
<math display="block"> | |||
\int \sec^{5} x dx = \frac{\sec^{3}x \tan x}{4} + \frac{ 3 \sec x \tan x}{8} + \frac{ 3}{8} | |||
\ln | \sec x + \tan x | + c. | |||
</math> | |||
Of course, the integration of <math>\int \cot^{n}x dx</math> parallels the technique for integrating | |||
<math>\int \tan^{n}x dx</math>, and the integration of <math>\int \csc^{n} x dx</math> parallels that for <math>\int \sec^{n}x dx</math>. | |||
The reduction formula corresponding to (2.2) is | |||
{{proofcard|Theorem|theorem-4| | |||
<math display="block"> | |||
\int \csc^{n} x dx = -\frac{\csc^{n - 2} x \cot x}{n - 1} + \frac{n - 2}{n - 1} \int \csc^{n - 2} x dx . | |||
</math>|}} | |||
The last type of integral to be discussed consists of those of the form | |||
<span id{{=}}"eq7.2.6"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\int \sec^{m}x \tan^{n}x dx, | |||
\label{eq7.2.6} | |||
\end{equation} | |||
</math> | |||
where <math>m</math> and <math>n</math> are positive integers. There are a number of variations, depending on whether each of <math>m</math> and <math>n</math> is even or odd. We shall consider | |||
three cases: | |||
''Case 1. $m$ is even.'' Then <math>m = 2k</math>, for some positive integer <math>k</math>. Hence | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int \sec^{m}x \tan^{n}x dx &=& \int \sec^{2k}x \tan^{n}x dx \\ | |||
&=& \int \sec^{2k-2}x \tan^{n}x \sec^{2}x dx\\ | |||
&=& \int (\sec^{2}x)^{k-1} \tan^{n}x \sec^{2} xdx\\ | |||
&=& \int (1 + \tan^{2}x)^{k-1} \tan^{n}x \sec^{2}x dx. | |||
\end{eqnarray*} | |||
</math> | |||
We can now expand <math>(1 + \tan^{2}x)^{k-1}</math>, and the result is that the original integral can be written as a sum of constant multiples of integrals of the form <math>\int \tan^{j}x \sec^{2}x dx</math>. As we have seen, each of these is equal to <math>\int u^{j}du</math>, with <math>u = \tan x</math>, and is easily integrated. | |||
''Case 2. <math>n</math> is odd.'' Then <math>n = 2k + 1</math>, for some nonnegative integer <math>k</math>. We write | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int \sec^{m}x \tan^{n} x dx &=& \int \sec^{m}x \tan^{2k+1}x dx \\ | |||
&=& \int \sec^{m - 1}x (\tan^{2}x)^{k} \sec x \tan x dx \\ | |||
&=& \int \sec^{m - 1}x (\sec^{2}x - 1)^{k} \sec x \tan x dx. | |||
\end{eqnarray*} | |||
</math> | |||
Again we expand by use of the Binomial Theorem. In this case, the original integral becomes a sum of constant multiples of integrals of the form <math>\int \sec^{j}x \sec x \tan x dx</math>, each of which can be integrated, since | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int \sec^{j}x \sec x \tan x dx &=& \int \sec^{j}x d(\sec x)\\ | |||
&=& \frac{1}{ j + 1} \sec^{j+1} x + c. | |||
\end{eqnarray*} | |||
</math> | |||
''Case 3. <math>n</math> is even.'' Then <math>n = 2k</math>, for some positive integer <math>k</math>. In this case, we have | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int \sec^{m} x \tan^{n} xdx &=& \int \sec^{m}x \tan^{2k}x dx\\ | |||
&=& \int \sec^{m}x (\tan^{2}x)^{k}dx \\ | |||
&=& \int \sec^{m}x (\sec^{2}x - 1)^{k} dx. | |||
\end{eqnarray*} | |||
</math> | |||
This time, if we expand the integrand, we get a sum of constant multiples of integrals of the type <math>\int \sec^{j}x dx</math>, and we can use the reduction formula (2.2) on each of them. | |||
The three cases discussed are not mutually exclusive, and one may have a choice. | |||
For example, if <math>m</math> is even and <math>n</math> odd, the integral may be found by the techniques of | |||
Case 1 or that of Case 2. If <math>m</math> and <math>n</math> are both even, either the techniques described | |||
in Case I or Case 3 may be used. | |||
'''Example''' | |||
Evaluate the integrals | |||
<math display="block"> | |||
\mbox{(a)}\;\;\; \int \sec^{4} x \tan^{6} xdx, \;\;\;\mbox{(b)}\;\;\; \int \sec^{3} x \tan^{5} xdx. | |||
</math> | |||
For (a) we write | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int \sec^{4}x \tan^{6}x dx &=& \int \sec^{2}x \tan^{6} x \sec^{2}x dx \\ | |||
&=& \int (1 + \tan^{2}x) \tan^{6}x \sec^{2}x dx \\ | |||
&=& \int \tan^{6}x \sec^{2}x dx + \int \tan^{8}x \sec^{2}x dx\\ | |||
&=& \frac{1}{7} \tan^{7}x + \frac{1}{9} \tan^{9}x + c. | |||
\end{eqnarray*} | |||
</math> | |||
It is also possible to evaluate this integral by the technique described in Case 3. | |||
However, the resulting computation would be so much longer that it would be foolish to do so. | |||
For (b) we use the method of Case 2. Factoring, we get | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\int \sec^{3} x \tan^{5} x dx | |||
&=& \int \sec^{2} x \tan^{4} x \sec x \tan x dx \\ | |||
&=& \int \sec^{2} x (\sec^{2} x - 1)^{2} \sec x \tan x dx \\ | |||
&=& \int \sec^{2} x (\sec^{4} x - 2 \sec^{2} x + 1) \sec x \tan x dx \\ | |||
&=& \int \sec^{6} x \sec x \tan x dx - 2\int \sec^{4} x \sec x \tan x dx \\ | |||
&+& \int \sec^{2} x \sec x \tan x dx \\ | |||
&=& \frac{1}{7} \sec^{7} x - \frac{2}{5} \sec^{5} x + \frac{1}{3} \sec^{3} x + c. | |||
\end{eqnarray*} | |||
</math> | |||
We conclude with the remark that techniques for integrating <math>\int \csc^{m} x \cot^{n}x</math> are analogous to those for <math>\int \sec^{m} x \tan^{n} x dx</math>. | |||
==General references== | |||
{{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}} |
Latest revision as of 21:08, 19 November 2024
Products of trigonometric functions, powers of trigonometric functions, and products of their powers are all functions which we need to integrate at various times. In this section techniques will be developed for finding antiderivatives of the commonly encountered functions of these types. The first and simplest occur with the integrals
None of these can be integrated directly, but eaeh of the three integrands is a term in the expansions of [math]\cos(ax + bx)[/math] and [math]\cos(ax - bx)[/math] or in the expansions of [math]\sin(ax + bx)[/math] and [math]\sin(ax - bx)[/math]. We can use these addition formulas to change products to sums or differences, and the latter ean be integrated easily.
Example
Integrate:
The integrand [math]\sin 8x \sin 3x[/math] in (a) is one term in the expansion of [math]\cos(8x + 3x)[/math] and also in the expansion of [math]\cos(8x - 3x)[/math]. That is, we have
Subtracting the first from the second, we get
Hence, since [math]8x - 3x = 5x[/math] and [math]8x + 3x = 11x[/math], we obtain
and so
For the integral in (b), we use the formulas for the sine of the sum and
difference of two numbers:
Adding, we have
Hence
and
It should be clear that, using the formulas for the cosine and sine of the sum and difference of two numbers as in Example 1, we can readily evaluate any integral of the type given in equations (1).
We next consider integrals of the type
in which at least one of the exponents m and n is an odd positive integer
(the other exponent need only be a real number). Suppose that [math]m = 2k + 1[/math],
where [math]k[/math] is a nonnegative integer. Then
Using the identity [math]\cos^{2}x = 1 - \sin^{2}x[/math], we obtain
The factor [math](1 - \sin^{2}x)^k[/math] can be expanded by the Binomial Theorem, and the result is that [math]\int \cos^{m}x \sin^{n}x dx[/math] can be written as a sum of constant multiples of integrals of the form [math]\int \sin^{q}x \cos x dx[/math]. Since
it follows that [math]\int \cos^{m}x \sin^{n}x dx[/math] can be readily evaluated. An entirely analogous argument follows if the exponent [math]n[/math] is an odd positive integer.
Example
Integrate
The integral in (a) illustrates that the method just described is applicable to odd positive integer powers of the sine or cosine (i.e., either [math]m[/math] or [math]n[/math] may be zero). We obtain
In (b) it is the exponent of the sine which is an odd positive
integer.
Hence
The third type of integral we consider consists of those of the form
in which both m and n are even nonnegative integers. These functions are not so simple to integrate as those containing an odd power. We first consider the special case in which either [math]m = 0[/math] or [math]n = 0[/math]. The simplest nontrivial examples are the two integrals
[math]\int \cos^{2}x dx[/math] and [math]\int \sin^{2}x dx[/math], which can be integrated by means of the identities
These are useful enough to be worth memorizing, but they can also be derived quickly by
addition and subtraction from the two more primitive identities
Evaluation of the two integrals is now a simple matter. We get
Going on to the higher powers, consider the integral [math]\int \cos^{2i} x dx[/math], where [math]i[/math] is an arbitrary positive integer. We write
The factor [math](1 + \cos 2x)^i[/math] can be expanded by the Binomial Theorem. The result is that [math]\cos^{2i}x[/math] can be written as a surli of constant multiples of functions of the form [math]\cos^{j}2x[/math], and in each of these [math]j \lt 2i[/math]. The terms in this sum for which [math]j[/math] is odd are all of the type already shown to be integrable. The terms for which [math]j[/math] is even are of the type now under consideration. However, the exponents [math]j[/math] are all smaller than the original power [math]2i[/math]. For each function [math]\cos^{j}2x[/math] with [math]j[/math] even and nonzero, we repeat the process just described. Again, the resulting even powers of the cosine will be reduced.
By repetition of these expansions, the even powers of the cosine can eventually all be reduced to zero. It follows that, although the process may be a tedious one, the integral [math]\int \cos^{2i}xdx[/math] can always be evaluated. The argument for [math]\int \sin^{2i}x dx[/math] is entirely analogous.
Example
Integrate [math]\int \sin^{6}2x dx[/math]. We write
Hence
In Example 2 we have shown that
We conclude that
Returning to the general case, we can now integrate [math]\int \cos^{m}x \sin^{n}xdx[/math], where [math]m[/math] and [math]n[/math] are arbitrary nonnegative even integers. For, setting [math]m = 2i[/math] and [math]n = 2j[/math], we can write
When expanded, the right side is a sum of constant multiples of even powers of
[math]\cos x[/math], and we have shown that each of these can be integrated. This completes the argument. Actually, if neither [math]m[/math] nor [math]n[/math] is zero, we can save time by using the identity
as illustrated in the following example.
Example
Integrate [math]\int \cos^{4}x \sin^{2}x dx[/math]. Since [math]\sin^{2}x[/math] is the factor with the smaller exponent, we write
Expanding, we get
Hence
An important alternative method for integrating positive integer powers of the sine and cosine
is by means of recursion (or reduction) formulas. In Section 1 [see (1.2), page 359], such a
formula was developed, expressing [math]\int \cos^{n}x dx[/math] in terms of [math]\int \cos^{n-2}x dx[/math].
Following the derivation, [math]\int \cos^{5} 2x dx[/math] is evaluated with two applications of the formula.
A similar reduction formula for [math]\int \sin^{n}x dx[/math] was given in Problem 4, page 361.
Certainly no one should memorize these formulas, but, if they are available, they undoubtedly provide the most automatic way of performing the integration.
\medskip
We next turn to the problem of evaluating
where [math]n[/math] is an arbitrary positive integer. For [math]n = 1[/math], the integral is an elementary one:
For [math]n \geq 2[/math], there is a reduction formula, which is easily derived as follows. Using the identity [math]\sec^{2} x - 1 = \tan^{2}x[/math], we have
Since [math]\frac{d}{dx} \tan x = \sec^{2}x[/math], the first integral on the right is equal to
Hence we obtain
However, we generally perform such integrations without explicit use of the reduction formula (2.1). We simply carry out this technique of replacing [math]\tan^{2}x[/math] by [math]\sec^{2}x - 1[/math] as often as necessary.
Example
Integrate [math]\tan 5x dx[/math]. Factoring and substituting, we get
The difficulty in evaluating the integral
where [math]n[/math] is a positive integer, depends on whether [math]n[/math] is even or odd. If [math]n = 2i[/math], for some positive integer [math]i[/math], then
Hence, if [math]n[/math] is even, [math]\sec^{n}x[/math] can be expanded into a sum of multiples of integrals of the form
If [math]n[/math] is odd, the problem is not so simple. We shall use the reduction formula
This formula is derived by integration by parts [see Problem 6(b), page 362] and is applicable for any integer [math]n \geq 2[/math], whether even or odd. With a finite number of applications, [math]\int \sec^{n} x dx[/math] can therefore be reduced to an expression in which the only remaining integral is [math]\int dx[/math] or [math]\int \sec x dx[/math], according as [math]n[/math] is even or odd. Hence, if [math]n[/math] is odd, we need to know [math]\int \sec x dx[/math]. An ingenious method of integration is to consider the pair of functions [math]\sec x[/math] and [math]\tan x[/math] and to observe that the derivative of each one is equal to [math]\sec x[/math] times the other. Writing this fact in terms of differentials, we have
Adding and factoring, we obtain
Hence
from which follows the useful formula
Example
Integrate [math]\int \sec^{5} x dx[/math]. Using the reduction formula (2.2) twice, we have
From this and (2.3), we conclude that
Of course, the integration of [math]\int \cot^{n}x dx[/math] parallels the technique for integrating [math]\int \tan^{n}x dx[/math], and the integration of [math]\int \csc^{n} x dx[/math] parallels that for [math]\int \sec^{n}x dx[/math]. The reduction formula corresponding to (2.2) is
The last type of integral to be discussed consists of those of the form
where [math]m[/math] and [math]n[/math] are positive integers. There are a number of variations, depending on whether each of [math]m[/math] and [math]n[/math] is even or odd. We shall consider three cases: Case 1. $m$ is even. Then [math]m = 2k[/math], for some positive integer [math]k[/math]. Hence
We can now expand [math](1 + \tan^{2}x)^{k-1}[/math], and the result is that the original integral can be written as a sum of constant multiples of integrals of the form [math]\int \tan^{j}x \sec^{2}x dx[/math]. As we have seen, each of these is equal to [math]\int u^{j}du[/math], with [math]u = \tan x[/math], and is easily integrated.
Case 2. [math]n[/math] is odd. Then [math]n = 2k + 1[/math], for some nonnegative integer [math]k[/math]. We write
Again we expand by use of the Binomial Theorem. In this case, the original integral becomes a sum of constant multiples of integrals of the form [math]\int \sec^{j}x \sec x \tan x dx[/math], each of which can be integrated, since
Case 3. [math]n[/math] is even. Then [math]n = 2k[/math], for some positive integer [math]k[/math]. In this case, we have
This time, if we expand the integrand, we get a sum of constant multiples of integrals of the type [math]\int \sec^{j}x dx[/math], and we can use the reduction formula (2.2) on each of them.
The three cases discussed are not mutually exclusive, and one may have a choice.
For example, if [math]m[/math] is even and [math]n[/math] odd, the integral may be found by the techniques of
Case 1 or that of Case 2. If [math]m[/math] and [math]n[/math] are both even, either the techniques described
in Case I or Case 3 may be used.
Example
Evaluate the integrals
For (a) we write
It is also possible to evaluate this integral by the technique described in Case 3.
However, the resulting computation would be so much longer that it would be foolish to do so.
For (b) we use the method of Case 2. Factoring, we get
We conclude with the remark that techniques for integrating [math]\int \csc^{m} x \cot^{n}x[/math] are analogous to those for [math]\int \sec^{m} x \tan^{n} x dx[/math].
General references
Doyle, Peter G. (2008). "Crowell and Slesnick's Calculus with Analytic Geometry" (PDF). Retrieved Oct 29, 2024.