guide:790bb571a8: Difference between revisions
No edit summary |
mNo edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 32: | Line 32: | ||
\newcommand{\mathds}{\mathbb} | \newcommand{\mathds}{\mathbb} | ||
</math></div> | </math></div> | ||
We are now ready to define infinite series. Consider an infinite sequence of real numbers <math>a_m, a_{m+1}, | We are now ready to define infinite series. Consider an infinite sequence of real numbers <math>a_m, a_{m+1}, | ||
a_{m+2},... .</math> From this sequence <math>\{a_i\}</math> we construct another sequence <math>\{s_n\}</math> with the same domain, called the '''sequence of partial sums''' and defined by | a_{m+2},... .</math> From this sequence <math>\{a_i\}</math> we construct another sequence <math>\{s_n\}</math> with the same domain, called the '''sequence of partial sums''' and defined by | ||
Line 178: | Line 178: | ||
The next theorem states that infinite series have what is commonly called the property of '''linearity'''. The result is a useful one because it shows that convergent infinite series may be added in the natural way and also multiplied by real numbers. Note that we have come across the property of linearity before. It is one of the basic features of finite series and also of definite integrals. | The next theorem states that infinite series have what is commonly called the property of '''linearity'''. The result is a useful one because it shows that convergent infinite series may be added in the natural way and also multiplied by real numbers. Note that we have come across the property of linearity before. It is one of the basic features of finite series and also of definite integrals. | ||
{{proofcard|Theorem|theorem-2|If <math>\sum_{i=m}^ \infty a_i</math> and <math>\sum_{i=m}^ \infty b_i</math> are convergent infinite series and if <math>c</math> is a real number, then the series <math>\sum_{i=m}^ \infty (a_i + b_i)</math> and <math>\sum_{i=m}^ \infty ca_i</math> are also convergent, and | {{proofcard|Theorem|theorem-2|If <math>\sum_{i=m}^ \infty a_i</math> and <math>\sum_{i=m}^ \infty b_i</math> are convergent infinite series and if <math>c</math> is a real number, then the series <math>\sum_{i=m}^ \infty (a_i + b_i)</math> and <math>\sum_{i=m}^ \infty ca_i</math> are also convergent, and | ||
<ul style{{=}}"list-style-type:lower-roman"> | |||
<li><math>\sum_{i=m}^\infty (a_i + b_i) = \sum_{i=m}^\infty a_i + \sum_{i=m}^\infty b_i .</math></li> | |||
<li><math>\sum_{i=m}^\infty ca_i = c \sum_{i=m}^\infty a_i.</math></li></ul>|The proofs of (i) and (ii) are direct corollaries of the corresponding parts of Theorem (1.1), page 475. Let <math>\{ s_n \}</math> and <math>\{ t_n \}</math>, be the two convergent sequences of partial sums corresponding to <math>\sum_{i=m}^\infty a_i</math> and <math>\sum_{i=m}^\infty b_i</math>, respectively. That is, | |||
|The proofs of (i) and (ii) are direct corollaries of the corresponding parts of Theorem (1.1), page 475. Let <math>\{ s_n \}</math> and <math>\{ t_n \}</math>, be the two convergent sequences of partial sums corresponding to <math>\sum_{i=m}^\infty a_i</math> and <math>\sum_{i=m}^\infty b_i</math>, respectively. That is, | |||
<math display="block"> | <math display="block"> | ||
Line 225: | Line 225: | ||
</math> | </math> | ||
and this completes the proof of part (i). Part (ii) is proved in the same way, and we omit the details.}} | and this completes the proof of part (i). Part (ii) is proved in the same way, and we omit the details.}} | ||
As an application of Theorem (2.2) we may conclude that ''if a series | |||
As an application of Theorem (2.2) we may conclude that ''if a series <math>\sum_{i=m}^\infty a_i</math> diverges and if <math>c \neq 0</math>, then <math>\sum_{i=m}^\infty ca_i</math> also diverges.'' For if the latter series converges, we know from part (ii) of (2.1) that | |||
<math display="block"> | <math display="block"> | ||
Line 331: | Line 332: | ||
Second, suppose that <math>r \leq - 1</math> or <math>r > 1</math>. For neither of these possibilities does <math>\lim_{n \rightarrow \infty} r^{n+1}</math> exist (again, see Problem 5, page 481). It follows that <math>\lim_{n \rightarrow \infty} s_n</math> also does not exist, and hence the series <math>\sum_{i=0}^\infty r^i</math> diverges. This completes the proof.}} | Second, suppose that <math>r \leq - 1</math> or <math>r > 1</math>. For neither of these possibilities does <math>\lim_{n \rightarrow \infty} r^{n+1}</math> exist (again, see Problem 5, page 481). It follows that <math>\lim_{n \rightarrow \infty} s_n</math> also does not exist, and hence the series <math>\sum_{i=0}^\infty r^i</math> diverges. This completes the proof.}} | ||
==General references== | ==General references== | ||
{{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}} | {{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}} |
Latest revision as of 01:07, 20 November 2024
We are now ready to define infinite series. Consider an infinite sequence of real numbers [math]a_m, a_{m+1}, a_{m+2},... .[/math] From this sequence [math]\{a_i\}[/math] we construct another sequence [math]\{s_n\}[/math] with the same domain, called the sequence of partial sums and defined by
That is, for every integer [math]n \geq m[/math], the number [math]s_n[/math] is given by
If the sequence [math]\{s_n\}[/math] of partial sums converges, we define its limit to be the value of the infinite series determined by the original sequence [math]\{a_i\}[/math], and we write
Example
Show that
For this series the sequence of partial sums is given by
and, more generally, by
Note that [math]s_0 = 2 - 1[/math], [math]s_1 = 2 - \frac{1}{2}[/math], and [math]s_2 = 2 - \frac{1}{4}[/math]. It is not hard to show that [math]s_n = 2 - \frac{1}{2^n}[/math] for every positive integer [math]n[/math]. Hence
and it then follows from the above definition that [math]\sum_{n=0}^\infty \frac{1}{2^i} = 2[/math].
If, for a given sequence of real numbers [math]a_m, a_{m+1}, . . .[/math], it happens that the corresponding sequence of partial sums does not converge, then the value of the infinite series is not defined. In this case we shall follow the customary terminology and say that the infinite series [math]\sum_{i=m}^\infty a_i[/math] diverges. On the other hand, if the sequence of partial sums does converge, we shall say that the infinite series [math]\sum_{i=m}^\infty a_i[/math] converges. Summarizing the above definitions (1) and (2) in a single formula, we obtain the equation
in which the series on the left converges if and only if the limit on the right exists.
Our first theorem states that if an infinite series [math]\sum_{i=m}^\infty a_i[/math] converges, then the sequence [math]\{ a_i \}[/math] must converge to zero:
If [math]\sum_{i=m}^\infty a_i[/math] converges, then [math]\lim_{n \rightarrow \infty} a_n = 0.[/math]
Let [math]s = \{ s_n \}[/math] be the sequence of partial sums. Since the infinite series converges, there exists a real number [math]L[/math] such that
As a result of Theorem (2.1) we see at once that both infinite series
are divergent. For the first, [math]\lim_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} (-1)^n 2[/math], which does not exist, and for the second, [math]\lim_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} (2 + \frac{1}{n^2}) = 2.[/math] [Warning: The converse of Theorem (2.1) is false. That is, it is not true that if [math]\lim_{n \rightarrow \infty} a_n = 0[/math], then [math]\sum_{i=m}^\infty a_i[/math] converges. A well-known counterexample is the series discussed in the following example.]
ExampleShow that the infinite series
Next, consider Figure 3, which shows the graph of the function [math]\frac{1}{x}[/math] between [math]x = 1[/math] and [math]x = n + 1[/math]. With respect to the partition [math]\sigma = \{ 1, 2, . . ., n+1 \}[/math], the upper sum [math]U_\sigma[/math] is equal to the sum of the areas of the shaded rectangles and is given by
Thus [math]U_\sigma = s_n[/math]. Since every upper sum is greater than or equal to the corresponding definite integral, we obtain
which completes the proof that the harmonic series diverges.
The next theorem states that infinite series have what is commonly called the property of linearity. The result is a useful one because it shows that convergent infinite series may be added in the natural way and also multiplied by real numbers. Note that we have come across the property of linearity before. It is one of the basic features of finite series and also of definite integrals.
If [math]\sum_{i=m}^ \infty a_i[/math] and [math]\sum_{i=m}^ \infty b_i[/math] are convergent infinite series and if [math]c[/math] is a real number, then the series [math]\sum_{i=m}^ \infty (a_i + b_i)[/math] and [math]\sum_{i=m}^ \infty ca_i[/math] are also convergent, and
- [math]\sum_{i=m}^\infty (a_i + b_i) = \sum_{i=m}^\infty a_i + \sum_{i=m}^\infty b_i .[/math]
- [math]\sum_{i=m}^\infty ca_i = c \sum_{i=m}^\infty a_i.[/math]
The proofs of (i) and (ii) are direct corollaries of the corresponding parts of Theorem (1.1), page 475. Let [math]\{ s_n \}[/math] and [math]\{ t_n \}[/math], be the two convergent sequences of partial sums corresponding to [math]\sum_{i=m}^\infty a_i[/math] and [math]\sum_{i=m}^\infty b_i[/math], respectively. That is,
As an application of Theorem (2.2) we may conclude that if a series [math]\sum_{i=m}^\infty a_i[/math] diverges and if [math]c \neq 0[/math], then [math]\sum_{i=m}^\infty ca_i[/math] also diverges. For if the latter series converges, we know from part (ii) of (2.1) that
and that the series on the right converges, contrary to assumption. For example, since the harmonic series [math]\sum_{i=1}^\infty \frac{1}{i}[/math] diverges, it follows at once that the series
If [math]m \lt 1[/math], then the series [math]\sum_{i=m}^\infty a_i[/math] converges if and only if [math]\sum_{i=l}^\infty a_i[/math] a converges. lf either converges, then
Let [math]\{ s_n \}[/math] and [math]\{ t_n \}[/math] be the sequences of partial sums for [math]\sum_{i=m}^\infty a_i[/math] and [math]\sum_{i=l}^\infty a_i[/math], respectively. Then
As an illustration, consider an infinite series [math]\sum_{i=0}^\infty a_i[/math] whose first thousand terms we know nothing about, but which has the property that [math]a_n = \frac{1}{2^n}[/math] for every integer [math]n \gt 1000[/math]. We have shown in Example 1 that the series [math]\sum_{i=0}^\infty \frac{1}{2^i}[/math] converges, and it follows by Theorem (2.3) that [math]\sum_{i=1001}^\infty \frac{1}{2^i}[/math] also converges. Since the latter series is precisely the series [math]\sum_{i=1001}^\infty a_i[/math], a second application of (2.3) establishes the convergence of the original series [math]\sum_{i=1}^\infty a_i[/math]. An infinite geometric series is one of the form
On the other hand, if (7) diverges and [math]a \neq 0[/math], then [math]\sum_{i=0}^\infty ar^i[/math] also diverges. The principal result about the convergence of geometric series is the followIng:
The geometric series (7) converges if and only if [math] -1 \lt r \lt 1[/math]. If it converges, then
If [math]r = 1[/math], the series (7) is the divergent series [math]1 + 1 + 1 + \cdots [/math]. Hence, in what follows, we shall assume that [math]r \neq 1[/math]. The sequence [math]\{ s \}[/math] of partial sums is defined by
General references
Doyle, Peter G. (2008). "Crowell and Slesnick's Calculus with Analytic Geometry" (PDF). Retrieved Oct 29, 2024.