guide:956af30164: Difference between revisions

From Stochiki
No edit summary
 
mNo edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
<div class="d-none"><math>
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
</math></div>


When we speak of the plane in this book, we assume, unless otherwise stated, that a pair of coordinate axes has been chosen. As a result, we identify the set of points in the plane with the set <math>R^2</math> of all ordered pairs of real numbers. A convenient notation for a function <math>P</math> whose domain is an interval <math>I</math> of real numbers and whose range is a subset of the plane is <math>P : I \rightarrow R^2</math>. Every function <math>P : I \rightarrow R^2</math> defines two '''coordinate functions,''' the functions which assign to every <math>t</math> in <math>I</math> the two coordinates of the point <math>P(t)</math>. If we denote the first coordinate function by <math>f</math>, and the second one by <math>g</math>, then they are defined by the equation
<math display="block">
\begin{equation}
P(t) = (f(t), g(t)), \;\;\;\mbox{for every $t$ in $I$.} 
\label{eq10.1.1}
\end{equation}
</math>
Conversely, of course, every ordered pair of real-valued functions <math>f</math> and <math>g</math> with an interval <math>I</math> as common domain defines a function <math>P : I \rightarrow R^2</math> by equation (1).
Since the first and second coordinates of an element of <math>R^2</math> are usually the <math>x</math>- and <math>y</math>-coordinates, respectively, we may alternatively define a function
<math>P : I \rightarrow R^2</math> by a pair of equations
<math display="block">
\left \{ \begin{array}{l}
x = f(t), \\
y = g(t),
\end{array}
\right .
</math>
where <math>f</math> and <math>g</math> are real-valued functions with domain <math>I</math>. Then, for every <math>t</math> in <math>I</math>, we have <math>P(t) = (x, y) = (f(t), g(t))</math>. It is also common practice to denote the coordinate functions themselves by <math>x</math> and <math>y</math>. When this is done, we do not hesitate to write the equations <math>x = x(t)</math> and <math>y = y(t)</math>, and the function <math>P : I \rightarrow R^2</math> is defined by
<math display="block">
P(t) = (x(t), y(t)), \;\;\;\mbox{for every $t$ in $I$.}
</math>
A function <math>P : I \rightarrow R^2</math> is said to be '''continuous at''' <math>t_0</math> if both coordinate functions are continuous at <math>t_0</math>. If the coordinate functions are denoted by <math>x</math> and <math>y</math>, then we define
<math display="block">
\lim_{t \rightarrow t_0} P(t) = (\lim_{t \rightarrow t_0} x(t), \lim_{t \rightarrow t_0} y(t)).
</math>
As a result, the definition of continuity for <math>P</math> is entirely analogous to that for a real-valued function: <math>P</math> is continuous at <math>t_0</math> if <math>t_0</math> is in the domain of <math>P</math> and if <math>\lim_{t \rightarrow t_0} P(t) = P(t_0)</math>. As before, the function <math>P</math> is simply said to be '''continuous''' if it is continuous at every number in its domain.
A '''curve''' in the plane is by definition a subset of <math>R^2</math> which is the range of some continuous function <math>P : I \rightarrow R^2</math>. Every curve is the range of many such functions, and, as a result, it is necessary to choose our terminology carefully. We shall call a continuous function <math>P : I \rightarrow R^2</math>, a '''parametrization''' of the curve <math>C</math> which is the range of <math>P</math>, and we shall say that <math>C</math> is '''parametrically defined''' by <math>P : I \rightarrow R^2</math>. The points of the curve <math>C</math> obviously consist of the set of all points <math>P(t)</math>, for every <math>t</math> in <math>I</math>. By a '''parametrized curve''' we shall mean the range of a specified continuous function <math>P : I \rightarrow R^2</math>. Speaking more casually, we shall refer to the curve defined parametrically by
<math display="block">
P(t)= (x(t), y(t)),
</math>
or, equivalently, to the curve defined parametrically by the equations
<math display="block">
\left \{ \begin{array}{l}
x = x(t), \\
y = y(t),
\end{array}
\right .
</math>
for every <math>t</math> in some interval <math>I</math> which is the common domain of the continuous functions <math>x</math> and <math>y</math>. If <math>t</math> is regarded as an independent variable, it is called the '''parameter''' of the parametrized curve.
'''Example'''
Draw the curve defined parametrically by
<math display="block">
P(t) = (t^2, t), \;\;\; -\infty  <  t  <  \infty.
</math>
This is, of course, also the curve defined by the equations
<math display="block">
\left \{ \begin{array}{l}
x = t^2,\\
y = t, \;\;\; -\infty  <  t  <  \infty.
\end{array}
\right .
</math>
It is plotted in Figure 1. Since the set of all points <math>(x, y)</math> which satisfy the above two equations is equal to the set of all points <math>(x, y)</math> such that <math>x = y^2</math>, we recognize the curve as a parabola.
<div id="fig 10.1" class="d-flex justify-content-center">
[[File:guide_c5467_scanfig10_1.png | 400px | thumb |  ]]
</div>
<span id="table 10.1"/>
{|class="table"
|-
|t    || (x, y)
|-
|0  || (0, 0)
|-
|1  || (1, 1)
|-
|-1  || (1, -1)
|-
|2  || (4, 2)
|-
|-2  || (4, -2)
|}
\medskip
It is worth noting that every curve which we have previously encountered as the graph of a continuous function <math>f</math> can be defined parametrically. The graph is the set of all points <math>(x, y)</math> such that <math>x</math> is in the domain of <math>f</math> and such that <math>y = f(x)</math>. This set is obviously equal to the set of all points <math>(x, y)</math> such that
<math display="block">
\begin{equation}
\left \{ \begin{array}{l}
x = t,\\
y = f(t), \;\;\;\mbox{and $t$ is in the domain of $f$.} 
\end{array}
\right .
\label{eq10.1.2}
\end{equation}
</math>
Hence the graph of <math>f</math> is defined parametrically by equations (2).
A function <math>P : I \rightarrow R^2</math> is '''differentiable at''' <math>t_0</math> if the derivatives of both coordinate functions exist at <math>t_0</math>. Moreover, following the usual style, we say that <math>P</math> is a '''differentiable function''' if it is differentiable at every number in its domain. This terminology is also applied to parametrized curves. That is, a curve defined parametrically by <math>P : I \rightarrow R^2</math> is said to be differentiable at <math>t_0</math>, or simply differentiable, according as <math>P</math> is differentiable at <math>t_0</math>, or is a differentiable function.
<span id="eq10.1.3"/>
'''Example'''
Draw and identify the curve <math>C</math> defined parametrically by
<math display="block">
P(t) = (x(t), y(t)) = (4\cos t, 3\sin t),
</math>
for every real number <math>t</math>. If <math>(x, y)</math> is an arbitrary point on the curve, then
<math display="block">
\{ \begin{array}{l}
x = 4 \cos t, \\
y = 3 \sin t,
\end{array}
</math>
for some value of <math>t</math>. Hence, <math>\frac{x}{4} = \cos t</math> and <math>\frac{y}{3} = \sin t</math>, and, consequently,
<math display="block">
\frac{x^2}{16} + \frac{y^2}{9} = \cos^2 t + \sin^2 t = 1 .
</math>
Thus for every point <math>(x, y)</math> on the curve, we have shown that
<span id{{=}}"eq10.1.3"/>
<math display="block">
\begin{equation}
\frac{x^2}{16} + \frac{y^2}{9} = 1. 
\label{eq10.1.3}
\end{equation}
</math>
The latter is an equation of the ellipse shown in Figure 2, and it follows that the curve <math>C</math> is a subset of the ellipse. Conversely, let <math>(x, y)</math> be an arbitrary point on the ellipse. Then <math>|x| \leq 4</math>, and so there exists a number <math>t</math> such that
<math>x = 4 \cos t</math>. Since <math>\cos t = \cos(-t)</math> and <math>\sin t = -\sin(-t)</math>, we may choose <math>t</math> so that <math>\sin t</math> and <math>y</math> have the same sign. Then, solving equation (3) for <math>y</math> and setting <math>x = 4 \cos t</math>, we obtain
<div id="fig 10.2" class="d-flex justify-content-center">
[[File:guide_c5467_scanfig10_2.png | 400px | thumb |  ]]
</div>
<math display="block">
\begin{eqnarray*}
y^2 &=& 9 \Big(1 - \frac{x^2}{16} \Big) = 9 \Big(1 - \frac{16 \cos^2 t}{16} \Big) = 9(1 - \cos^2 t) \\
    &=& 9 \sin^2t.
\end{eqnarray*}
</math>
Since <math>y</math> and <math>\sin t</math> have the same sign, it follows that <math>y = 3 \sin t</math>. We have therefore proved that, if <math>(x, y)</math> is an arbitrary point on the ellipse, then there exists a real number <math>t</math> such that
<math display="block">
(x, y) = (4 \cos t, 3 \sin t) = P(t).
</math>
That is, every point on the ellipse also lies on <math>C</math>. We have already shown that the converse is true, and we therefore conclude that the parametrized curve <math>C</math> is equal to the ellipse.
Consider a curve <math>C</math> defined parametrically by a differentiable function <math>P : I \rightarrow R^2</math>, and let <math>t_0</math> be an interior point of the interval <math>I</math>. A typical example is shown in Figure 3. Generally it will not be the case that the whole curve is a function of <math>x</math>, since there may be distinct points on <math>C</math> with the same <math>x</math>-coordinate. However, it can happen that a subset of <math>C</math> containing the point <math>P(t_0)</math> is a differentiable function. Such a subset is shown in Figure 3, drawn with a heavy line. Thus if <math>P(t) = (x(t), y(t))</math> for every <math>t</math> in <math>I</math>, then there may exist a differentiable function <math>f</math> such that
<div id="fig 10.3" class="d-flex justify-content-center">
[[File:guide_c5467_scanfig10_3.png | 400px | thumb |  ]]
</div>
<span id{{=}}"eq10.1.4"/>
<math display="block">
\begin{equation}
y(t) = f(x(t)), 
\label{eq10.1.4}
\end{equation}
</math>
for every <math>t</math> in some subinterval of <math>I</math> containing <math>t_0</math> in its interior. If such a function does exist, we shall say that <math>y</math> is a differentiable function of <math>x</math> on the parametrized curve <math>P(t) = (x(t), y(t))</math> in a neighborhood of the point <math>P(t_0)</math>.  Applying the Chain Rule to equation (4), we obtain
<math display="block">
y'(t) = f'(x(t)) x'(t) .
</math>
Hence
<span id{{=}}"eq10.1.5"/>
<math display="block">
\begin{equation}
f'(x(t)) = \frac{y'(t)}{x'(t)},
\label{eq10.1.5}
\end{equation}
</math>
for every <math>t</math> in the subinterval, for which <math>x'(t) \neq 0</math>. If we write <math>y = f(x)</math> and use the differential notation for the derivative, formula (5) becomes
<span id{{=}}"eq10.1.6"/>
<math display="block">
\begin{equation}
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}.
\label{eq10.1.6}
\end{equation}
</math>
It should be apparent that <math>f'(x(t))</math>, or, equivalently, <math>\frac{dy}{dx}</math> at <math>t</math>, is equal to the slope of the curve <math>C</math> at the point <math>P(t)</math>. 
'''Example'''
Find the slope, when <math>t = \frac{\pi}{3}</math>, of the parametrized ellipse in Example 2. The parametrization is defined by the equations
<math display="block">
\left \{ \begin{array}{l}
x= 4\cos t, \\
y = 3 \sin t.
\end{array}
\right.
</math>
We shall assume the analytic result that <math>y</math> is defined as a differentiable function of <math>x</math> in a neighborhood of the point
<math display="block">
\Big(4 \cos \frac{\pi}{3},  3 \sin \frac{\pi}{3} \Big).
</math>
Since
<math display="block">
\Big(4 \cos \frac{\pi}{3}, 3 \sin \frac{\pi}{3} \Big) = \Big(4 \cdot \frac{1}{2}, 3 \cdot \frac{\sqrt 3}{2} \Big) = \Big(2 , \frac{3 \sqrt 3}{2} \Big) ,
</math>
one can see by simply looking at Figure 2 that this should certainly be true since the curve passes smoothly through the point and, in the immediate vicinity of the point, does not double back on itself. We have
<math display="block">
\begin{eqnarray*}
\frac{dx}{dt} &=& \frac{d}{dt} 4 \cos t = - 4 \sin t ,\\
\frac{dy}{dt} &=& \frac{d}{dt} 3 \sin t = 3 \cos t ,
\end{eqnarray*}
</math>
and so
<math display="block">
\begin{eqnarray*}
\frac{dx}{dt}\Big|_{t=\pi/3} &=& -4 \sin \frac{\pi}{3} = -4 \frac{\sqrt 3}{2} = - 2\sqrt 3, \\
\frac{dy}{dt}\Big|_{t=\pi/3} &=& 3 \cos \frac{\pi}{3} = \frac{3}{2} .
\end{eqnarray*}
</math>
Hence, by formula (6), the slope is equal to
<math display="block">
\frac{dy}{dx}\Big|_{t=\pi/3} = \frac{\frac{dy}{dt}\Big|_{t=\pi/3}}{\frac{dx}{dt}\Big|_{t=\pi/3}} = \frac{\frac{3}{2}}{-2 \sqrt 3} = - \frac{3}{4 \sqrt 3} .
</math>
The problem of giving analytic conditions which imply that <math>y</math> is a differentiable function of <math>x</math> on a parametrized curve in the neighborhood of a point is akin to the problem of determining when an equation <math>F(x, y) = c</math> implicitly defines <math>y</math> as a differentiable function of <math>x</math> in a neighborhood of a point. As mentioned on page 81, the latter is solved by the Implicit Function Theorem, and the techniques needed here are similar.
As a final example, let us consider the curve traced by a point fixed on the circumference of a wheel as the wheel rolls along a straight line. We take the <math>x</math>-axis for the straight line. The radius of the wheel we denote by <math>a</math>, and the point on the circumference by <math>(x,y)</math>. If we assume that the point passes through the origin as the wheel rolls by to the right, then the curve is
defined parametrically by the equations
<math display="block">
\left \{ \begin{array}{l}
x = a(\theta - \sin \theta),\\
y = a(1 - \cos \theta), \;\;\; -\infty  <  \theta  <  \infty,
\end{array}
\right .
</math>
where the parameter <math>\theta</math> is the radian measure of the angle with vertex the center of the wheel, initial side the half-line pointing vertically downward, and terminal side the half-line through <math>(x, y)</math> (see Figure 4). (An alternative
geometric interpretation of the parameter is that <math>a\theta</math> is the coordinate of the point of tangency of the wheel on the <math>x</math>-axis.) The curve is called a '''cycloid.''' Note that the parametric equations are quite simple, whereas it would be difficult to express <math>y</math> as a function of <math>x</math>.
<div id="fig 10.4" class="d-flex justify-content-center">
[[File:guide_c5467_scanfig10_4.png | 400px | thumb |  ]]
</div>
==General references==
{{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}}

Latest revision as of 00:15, 21 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

When we speak of the plane in this book, we assume, unless otherwise stated, that a pair of coordinate axes has been chosen. As a result, we identify the set of points in the plane with the set [math]R^2[/math] of all ordered pairs of real numbers. A convenient notation for a function [math]P[/math] whose domain is an interval [math]I[/math] of real numbers and whose range is a subset of the plane is [math]P : I \rightarrow R^2[/math]. Every function [math]P : I \rightarrow R^2[/math] defines two coordinate functions, the functions which assign to every [math]t[/math] in [math]I[/math] the two coordinates of the point [math]P(t)[/math]. If we denote the first coordinate function by [math]f[/math], and the second one by [math]g[/math], then they are defined by the equation


[[math]] \begin{equation} P(t) = (f(t), g(t)), \;\;\;\mbox{for every $t$ in $I$.} \label{eq10.1.1} \end{equation} [[/math]]

Conversely, of course, every ordered pair of real-valued functions [math]f[/math] and [math]g[/math] with an interval [math]I[/math] as common domain defines a function [math]P : I \rightarrow R^2[/math] by equation (1). Since the first and second coordinates of an element of [math]R^2[/math] are usually the [math]x[/math]- and [math]y[/math]-coordinates, respectively, we may alternatively define a function [math]P : I \rightarrow R^2[/math] by a pair of equations

[[math]] \left \{ \begin{array}{l} x = f(t), \\ y = g(t), \end{array} \right . [[/math]]

where [math]f[/math] and [math]g[/math] are real-valued functions with domain [math]I[/math]. Then, for every [math]t[/math] in [math]I[/math], we have [math]P(t) = (x, y) = (f(t), g(t))[/math]. It is also common practice to denote the coordinate functions themselves by [math]x[/math] and [math]y[/math]. When this is done, we do not hesitate to write the equations [math]x = x(t)[/math] and [math]y = y(t)[/math], and the function [math]P : I \rightarrow R^2[/math] is defined by

[[math]] P(t) = (x(t), y(t)), \;\;\;\mbox{for every $t$ in $I$.} [[/math]]

A function [math]P : I \rightarrow R^2[/math] is said to be continuous at [math]t_0[/math] if both coordinate functions are continuous at [math]t_0[/math]. If the coordinate functions are denoted by [math]x[/math] and [math]y[/math], then we define

[[math]] \lim_{t \rightarrow t_0} P(t) = (\lim_{t \rightarrow t_0} x(t), \lim_{t \rightarrow t_0} y(t)). [[/math]]

As a result, the definition of continuity for [math]P[/math] is entirely analogous to that for a real-valued function: [math]P[/math] is continuous at [math]t_0[/math] if [math]t_0[/math] is in the domain of [math]P[/math] and if [math]\lim_{t \rightarrow t_0} P(t) = P(t_0)[/math]. As before, the function [math]P[/math] is simply said to be continuous if it is continuous at every number in its domain. A curve in the plane is by definition a subset of [math]R^2[/math] which is the range of some continuous function [math]P : I \rightarrow R^2[/math]. Every curve is the range of many such functions, and, as a result, it is necessary to choose our terminology carefully. We shall call a continuous function [math]P : I \rightarrow R^2[/math], a parametrization of the curve [math]C[/math] which is the range of [math]P[/math], and we shall say that [math]C[/math] is parametrically defined by [math]P : I \rightarrow R^2[/math]. The points of the curve [math]C[/math] obviously consist of the set of all points [math]P(t)[/math], for every [math]t[/math] in [math]I[/math]. By a parametrized curve we shall mean the range of a specified continuous function [math]P : I \rightarrow R^2[/math]. Speaking more casually, we shall refer to the curve defined parametrically by

[[math]] P(t)= (x(t), y(t)), [[/math]]

or, equivalently, to the curve defined parametrically by the equations

[[math]] \left \{ \begin{array}{l} x = x(t), \\ y = y(t), \end{array} \right . [[/math]]

for every [math]t[/math] in some interval [math]I[/math] which is the common domain of the continuous functions [math]x[/math] and [math]y[/math]. If [math]t[/math] is regarded as an independent variable, it is called the parameter of the parametrized curve.

Example

Draw the curve defined parametrically by

[[math]] P(t) = (t^2, t), \;\;\; -\infty \lt t \lt \infty. [[/math]]

This is, of course, also the curve defined by the equations

[[math]] \left \{ \begin{array}{l} x = t^2,\\ y = t, \;\;\; -\infty \lt t \lt \infty. \end{array} \right . [[/math]]

It is plotted in Figure 1. Since the set of all points [math](x, y)[/math] which satisfy the above two equations is equal to the set of all points [math](x, y)[/math] such that [math]x = y^2[/math], we recognize the curve as a parabola.

t (x, y)
0 (0, 0)
1 (1, 1)
2 (4, 2)

\medskip It is worth noting that every curve which we have previously encountered as the graph of a continuous function [math]f[/math] can be defined parametrically. The graph is the set of all points [math](x, y)[/math] such that [math]x[/math] is in the domain of [math]f[/math] and such that [math]y = f(x)[/math]. This set is obviously equal to the set of all points [math](x, y)[/math] such that


[[math]] \begin{equation} \left \{ \begin{array}{l} x = t,\\ y = f(t), \;\;\;\mbox{and $t$ is in the domain of $f$.} \end{array} \right . \label{eq10.1.2} \end{equation} [[/math]]


Hence the graph of [math]f[/math] is defined parametrically by equations (2). A function [math]P : I \rightarrow R^2[/math] is differentiable at [math]t_0[/math] if the derivatives of both coordinate functions exist at [math]t_0[/math]. Moreover, following the usual style, we say that [math]P[/math] is a differentiable function if it is differentiable at every number in its domain. This terminology is also applied to parametrized curves. That is, a curve defined parametrically by [math]P : I \rightarrow R^2[/math] is said to be differentiable at [math]t_0[/math], or simply differentiable, according as [math]P[/math] is differentiable at [math]t_0[/math], or is a differentiable function.

Example

Draw and identify the curve [math]C[/math] defined parametrically by

[[math]] P(t) = (x(t), y(t)) = (4\cos t, 3\sin t), [[/math]]

for every real number [math]t[/math]. If [math](x, y)[/math] is an arbitrary point on the curve, then


[[math]] \{ \begin{array}{l} x = 4 \cos t, \\ y = 3 \sin t, \end{array} [[/math]]

for some value of [math]t[/math]. Hence, [math]\frac{x}{4} = \cos t[/math] and [math]\frac{y}{3} = \sin t[/math], and, consequently,

[[math]] \frac{x^2}{16} + \frac{y^2}{9} = \cos^2 t + \sin^2 t = 1 . [[/math]]

Thus for every point [math](x, y)[/math] on the curve, we have shown that

[[math]] \begin{equation} \frac{x^2}{16} + \frac{y^2}{9} = 1. \label{eq10.1.3} \end{equation} [[/math]]


The latter is an equation of the ellipse shown in Figure 2, and it follows that the curve [math]C[/math] is a subset of the ellipse. Conversely, let [math](x, y)[/math] be an arbitrary point on the ellipse. Then [math]|x| \leq 4[/math], and so there exists a number [math]t[/math] such that [math]x = 4 \cos t[/math]. Since [math]\cos t = \cos(-t)[/math] and [math]\sin t = -\sin(-t)[/math], we may choose [math]t[/math] so that [math]\sin t[/math] and [math]y[/math] have the same sign. Then, solving equation (3) for [math]y[/math] and setting [math]x = 4 \cos t[/math], we obtain


[[math]] \begin{eqnarray*} y^2 &=& 9 \Big(1 - \frac{x^2}{16} \Big) = 9 \Big(1 - \frac{16 \cos^2 t}{16} \Big) = 9(1 - \cos^2 t) \\ &=& 9 \sin^2t. \end{eqnarray*} [[/math]]


Since [math]y[/math] and [math]\sin t[/math] have the same sign, it follows that [math]y = 3 \sin t[/math]. We have therefore proved that, if [math](x, y)[/math] is an arbitrary point on the ellipse, then there exists a real number [math]t[/math] such that

[[math]] (x, y) = (4 \cos t, 3 \sin t) = P(t). [[/math]]

That is, every point on the ellipse also lies on [math]C[/math]. We have already shown that the converse is true, and we therefore conclude that the parametrized curve [math]C[/math] is equal to the ellipse.

Consider a curve [math]C[/math] defined parametrically by a differentiable function [math]P : I \rightarrow R^2[/math], and let [math]t_0[/math] be an interior point of the interval [math]I[/math]. A typical example is shown in Figure 3. Generally it will not be the case that the whole curve is a function of [math]x[/math], since there may be distinct points on [math]C[/math] with the same [math]x[/math]-coordinate. However, it can happen that a subset of [math]C[/math] containing the point [math]P(t_0)[/math] is a differentiable function. Such a subset is shown in Figure 3, drawn with a heavy line. Thus if [math]P(t) = (x(t), y(t))[/math] for every [math]t[/math] in [math]I[/math], then there may exist a differentiable function [math]f[/math] such that

[[math]] \begin{equation} y(t) = f(x(t)), \label{eq10.1.4} \end{equation} [[/math]]


for every [math]t[/math] in some subinterval of [math]I[/math] containing [math]t_0[/math] in its interior. If such a function does exist, we shall say that [math]y[/math] is a differentiable function of [math]x[/math] on the parametrized curve [math]P(t) = (x(t), y(t))[/math] in a neighborhood of the point [math]P(t_0)[/math]. Applying the Chain Rule to equation (4), we obtain

[[math]] y'(t) = f'(x(t)) x'(t) . [[/math]]

Hence

[[math]] \begin{equation} f'(x(t)) = \frac{y'(t)}{x'(t)}, \label{eq10.1.5} \end{equation} [[/math]]


for every [math]t[/math] in the subinterval, for which [math]x'(t) \neq 0[/math]. If we write [math]y = f(x)[/math] and use the differential notation for the derivative, formula (5) becomes


[[math]] \begin{equation} \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}. \label{eq10.1.6} \end{equation} [[/math]]

It should be apparent that [math]f'(x(t))[/math], or, equivalently, [math]\frac{dy}{dx}[/math] at [math]t[/math], is equal to the slope of the curve [math]C[/math] at the point [math]P(t)[/math].

Example

Find the slope, when [math]t = \frac{\pi}{3}[/math], of the parametrized ellipse in Example 2. The parametrization is defined by the equations

[[math]] \left \{ \begin{array}{l} x= 4\cos t, \\ y = 3 \sin t. \end{array} \right. [[/math]]

We shall assume the analytic result that [math]y[/math] is defined as a differentiable function of [math]x[/math] in a neighborhood of the point

[[math]] \Big(4 \cos \frac{\pi}{3}, 3 \sin \frac{\pi}{3} \Big). [[/math]]

Since

[[math]] \Big(4 \cos \frac{\pi}{3}, 3 \sin \frac{\pi}{3} \Big) = \Big(4 \cdot \frac{1}{2}, 3 \cdot \frac{\sqrt 3}{2} \Big) = \Big(2 , \frac{3 \sqrt 3}{2} \Big) , [[/math]]

one can see by simply looking at Figure 2 that this should certainly be true since the curve passes smoothly through the point and, in the immediate vicinity of the point, does not double back on itself. We have

[[math]] \begin{eqnarray*} \frac{dx}{dt} &=& \frac{d}{dt} 4 \cos t = - 4 \sin t ,\\ \frac{dy}{dt} &=& \frac{d}{dt} 3 \sin t = 3 \cos t , \end{eqnarray*} [[/math]]


and so

[[math]] \begin{eqnarray*} \frac{dx}{dt}\Big|_{t=\pi/3} &=& -4 \sin \frac{\pi}{3} = -4 \frac{\sqrt 3}{2} = - 2\sqrt 3, \\ \frac{dy}{dt}\Big|_{t=\pi/3} &=& 3 \cos \frac{\pi}{3} = \frac{3}{2} . \end{eqnarray*} [[/math]]


Hence, by formula (6), the slope is equal to

[[math]] \frac{dy}{dx}\Big|_{t=\pi/3} = \frac{\frac{dy}{dt}\Big|_{t=\pi/3}}{\frac{dx}{dt}\Big|_{t=\pi/3}} = \frac{\frac{3}{2}}{-2 \sqrt 3} = - \frac{3}{4 \sqrt 3} . [[/math]]

The problem of giving analytic conditions which imply that [math]y[/math] is a differentiable function of [math]x[/math] on a parametrized curve in the neighborhood of a point is akin to the problem of determining when an equation [math]F(x, y) = c[/math] implicitly defines [math]y[/math] as a differentiable function of [math]x[/math] in a neighborhood of a point. As mentioned on page 81, the latter is solved by the Implicit Function Theorem, and the techniques needed here are similar. As a final example, let us consider the curve traced by a point fixed on the circumference of a wheel as the wheel rolls along a straight line. We take the [math]x[/math]-axis for the straight line. The radius of the wheel we denote by [math]a[/math], and the point on the circumference by [math](x,y)[/math]. If we assume that the point passes through the origin as the wheel rolls by to the right, then the curve is defined parametrically by the equations

[[math]] \left \{ \begin{array}{l} x = a(\theta - \sin \theta),\\ y = a(1 - \cos \theta), \;\;\; -\infty \lt \theta \lt \infty, \end{array} \right . [[/math]]

where the parameter [math]\theta[/math] is the radian measure of the angle with vertex the center of the wheel, initial side the half-line pointing vertically downward, and terminal side the half-line through [math](x, y)[/math] (see Figure 4). (An alternative geometric interpretation of the parameter is that [math]a\theta[/math] is the coordinate of the point of tangency of the wheel on the [math]x[/math]-axis.) The curve is called a cycloid. Note that the parametric equations are quite simple, whereas it would be difficult to express [math]y[/math] as a function of [math]x[/math].


General references

Doyle, Peter G. (2008). "Crowell and Slesnick's Calculus with Analytic Geometry" (PDF). Retrieved Oct 29, 2024.