guide:8da4726d42: Difference between revisions
No edit summary |
mNo edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
<div class="d-none"><math> | |||
\newcommand{\ex}[1]{\item } | |||
\newcommand{\sx}{\item} | |||
\newcommand{\x}{\sx} | |||
\newcommand{\sxlab}[1]{} | |||
\newcommand{\xlab}{\sxlab} | |||
\newcommand{\prov}[1] {\quad #1} | |||
\newcommand{\provx}[1] {\quad \mbox{#1}} | |||
\newcommand{\intext}[1]{\quad \mbox{#1} \quad} | |||
\newcommand{\R}{\mathrm{\bf R}} | |||
\newcommand{\Q}{\mathrm{\bf Q}} | |||
\newcommand{\Z}{\mathrm{\bf Z}} | |||
\newcommand{\C}{\mathrm{\bf C}} | |||
\newcommand{\dt}{\textbf} | |||
\newcommand{\goesto}{\rightarrow} | |||
\newcommand{\ddxof}[1]{\frac{d #1}{d x}} | |||
\newcommand{\ddx}{\frac{d}{dx}} | |||
\newcommand{\ddt}{\frac{d}{dt}} | |||
\newcommand{\dydx}{\ddxof y} | |||
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} | |||
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} | |||
\newcommand{\dist}{\mathrm{distance}} | |||
\newcommand{\arccot}{\mathrm{arccot\:}} | |||
\newcommand{\arccsc}{\mathrm{arccsc\:}} | |||
\newcommand{\arcsec}{\mathrm{arcsec\:}} | |||
\newcommand{\arctanh}{\mathrm{arctanh\:}} | |||
\newcommand{\arcsinh}{\mathrm{arcsinh\:}} | |||
\newcommand{\arccosh}{\mathrm{arccosh\:}} | |||
\newcommand{\sech}{\mathrm{sech\:}} | |||
\newcommand{\csch}{\mathrm{csch\:}} | |||
\newcommand{\conj}[1]{\overline{#1}} | |||
\newcommand{\mathds}{\mathbb} | |||
</math></div> | |||
Consider a function whose domain is a subset of the set of all real numbers and whose range is a subset of all vectors in the plane. If we denote this function by <math>\mbox'''{v'''}</math>, then its value at each number <math>t</math> in the domain is the vector <math>\mbox'''{v'''}(t)</math>. Every such vector-valued function <math>\mbox'''{v'''}</math> of a real variable defines two real-valued '''coordinate functions''' | |||
<math>v_1</math> and <math>v_2</math> as follows: For every <math>t</math> in the domain of <math>\mbox'''{v'''}</math>, the numbers <math>v_1(t)</math> and <math>v_2(t)</math> are the first and second coordinates of the vector <math>\mbox'''{v'''}(t)</math>, respectively. Hence, if the initial point of <math>\mbox'''{v'''}(t)</math> is <math>P(t)</math>, then <math>v_1(t)</math> and <math>v_2(t)</math> are defined by the equation | |||
<span id{{=}}"eq10.4.1"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\mbox'''{v'''}(t) = (v_1(t), v_2(t))_{P(t)}. | |||
\label{eq10.4.1} | |||
\end{equation} | |||
</math> | |||
Limits of vector-valued functions are defined in terms of limits of real-valued functions. Specifically, the '''limit''' of <math>\mbox'''{v'''}(t)</math>, as <math>t</math> approaches <math>t_0</math>, will be denoted by <math>\lim_{t \rightarrow t_0} \mbox'''{v'''}(t)</math> and is defined by | |||
<span id{{=}}"eq10.4.2"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\lim_{t \rightarrow t_0} \mbox'''{v'''}(t) = (\lim_{t \rightarrow t_0} v_1(t), \lim_{t \rightarrow t_0} v_2(t)) _{\lim_{t \rightarrow t_0} P(t)} . | |||
\label{eq10.4.2} | |||
\end{equation} | |||
</math> | |||
[For the definition of <math>\lim_{t \rightarrow t_0} P(t)</math>, see page 542.] There is the possibility that all the vectors <math>\mbox'''{v'''}(t)</math> have the same initial point <math>P_0</math>, i.e., that they all lie in the vector space <math>\mathcal{V}_{P_0}</math>. If this happens, (2) reduces to the simpler equation | |||
<math display="block"> | |||
\lim_{t \rightarrow t_0} \mbox'''{v'''}(t) = (\lim_{t \rightarrow t_0} v_1(t), \lim_{t \rightarrow t_0} v_2(t))_{P_0} . | |||
</math> | |||
Let <math>C</math> be a curve in the plane defined by a parametrization <math>P: I \rightarrow R^2</math>. If the coordinate functions of <math>P</math> are denoted by <math>x</math> and <math>y</math>, then <math>C</math> is the set of all points | |||
<math display="block"> | |||
P(t)= (x(t), y(t)) | |||
</math> | |||
such that <math>t</math> is in the interval <math>I</math>. A typical example is shown in Figure 14. Consider a number <math>t_0</math> in <math>I</math>. If <math>t</math> is in <math>I</math> and distinct from <math>t_0</math>, then the vector <math>(P(t_0), P(t))</math> represents the change in the value of <math>P</math> from the point <math>P(t_0)</math> to | |||
the point <math>P(t)</math>. Thus for a change in the value of the parameter from <math>t_0</math> to <math>t</math>, the scalar product | |||
<span id{{=}}"eq10.4.3"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\frac{1}{t - t_0} (P(t_0), P(t)) | |||
\label{eq10.4.3} | |||
\end{equation} | |||
</math> | |||
<div id="fig 10.14" class="d-flex justify-content-center"> | |||
[[File:guide_c5467_scanfig10_14.png | 400px | thumb | ]] | |||
</div> | |||
is the ratio of the corresponding change in the value of <math>P</math> to the difference <math>t - t_0</math>. Hence the vector (3) represents an average rate of change in position with respect to a change in the parameter. In analogy with the definition of the derivative of a real-valued function, we define the '''derived vector''' of <math>P</math> at <math>t_0</math>, denoted by <math>\mbox'''{d'''}P(t_0)</math>, by the equation | |||
<math display="block"> | |||
\mbox'''{d'''}P(t_0)= \lim_{t \rightarrow t_0} \frac{1}{t - t_0} (P(t_0),P(t)). | |||
</math> | |||
Since <math>P(t_0) = (x(t_0), y(t_0))</math> and <math>P(t) = (x(t), y(t))</math>, the coordinate form of the vector <math>(P(t_0), P(t))</math> is given by | |||
<math display="block"> | |||
(P(t_0), P(t)) = (x(t) - x(t_0), y(t) - y(t_0))_{P(t_0)}. | |||
</math> | |||
By the definition of the scalar product, | |||
<math display="block"> | |||
\frac{1}{t - t_0} (P(t_0), P(t)) = \left( \frac{x(t) - x(t_0)}{t - t_0}, \frac{y(t) - y(t_0)}{t - t_0} \right)_{P(t_0)} , | |||
</math> | |||
and so | |||
<math display="block"> | |||
\mbox'''{d'''}P(t_0) = \left( \lim_{t \rightarrow t_0} \frac{x(t) - x(t_0)}{t - t_0}, \lim_{t \rightarrow t_0} \frac{y(t) - y(t_0)}{t - t_0} \right)_{P(t_0)} . | |||
</math> | |||
Recall that the derivatives of the functions <math>x</math> and <math>y</math> at <math>t_0</math> are by definition | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
x'(t_0) &=& \lim_{t \rightarrow t_0} \frac{x(t) - x(t_0)}{t - t_0}, \\ | |||
y'(t_0) &=& \lim_{t \rightarrow t_0} \frac{y(t) - y(t_0)}{t - t_0}, | |||
\end{eqnarray*} | |||
</math> | |||
provided these limits exist. It follows that | |||
{{proofcard|Theorem|theorem-1|The parametrization defined by <math>P(t) = (x(t), y(t) )</math> is differentiable at <math>t_0</math> if and only if the derived vector <math>\mbox'''{d'''}P(t_0)</math> exists. If it does exist, then | |||
<math display="block"> | |||
\mbox'''{d'''}P(t_0) = (x'(t_0), y'(t_0))_{P(t_0)} . | |||
</math>|}} | |||
'''Example''' | |||
Consider the curve parametrized by | |||
<math display="block"> | |||
P(t) = (x(t), y(t)) = (t^2 - 1, 2t + 1), \;\;\; - \infty < t < \infty. | |||
</math> | |||
Compute the derived vectors of <math>P</math> at <math>t_0 = - 1</math>, at <math>t_0 = 0</math>, and at <math>t_0 = 1</math>. Draw the curve and the three derived vectors in the <math>xy</math>-plane. As a result of (4.1), we have | |||
<math display="block"> | |||
\mbox'''{d'''}P(t_0) = (x'(t_0),y'(t_0))_{P(t_0)} = (2t_0, 2)_{P(t_0)} . | |||
</math> | |||
Hence | |||
<math display="block"> | |||
\begin{array}{ccl} | |||
\mbox'''{d'''}P(-1) = (- 2, 2)_{P(-1)}&\;\;\;\mathrm{and}&\;\;\; P(-1) = (0, -1), \\ | |||
\mbox'''{d'''}P(0) = (0, 2)_{P(0)} &\;\;\;\mathrm{and}&\;\;\; P(0) = (-1, 1), \\ | |||
\mbox'''{d'''}P(1) = (2, 2)_{P(1)} &\;\;\;\mathrm{and}&\;\;\; P(1) = (0, 3) . | |||
\end{array} | |||
</math> | |||
The terminal points of the three derived vectors are, respectively, | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
(0 - 2, -1 + 2) &=& (-2, 1), \\ | |||
(-1 + 0, 1 + 2) &=& (-1, 3), \\ | |||
(0 + 2, 3 + 2) &=& (2, 5) . | |||
\end{eqnarray*} | |||
</math> | |||
The parametrized curve is a parabola, as can be seen by setting | |||
<math display="block"> | |||
\left \{ \begin{array}{l} | |||
x = t^2 - 1, \\ | |||
y = 2t + 1. | |||
\end{array} | |||
\right . | |||
</math> | |||
Solving the second equation for <math>t</math>, we get <math>t = \frac{y -1}{2}</math>, and substituting this value in the first, we obtain <math>x = \frac{(y - 1)^2}{4} - 1</math>, or, equivalently, | |||
<math display="block"> | |||
4(x + 1) = (y - 1)^2. | |||
</math> | |||
The latter is an equation of a parabola with vertex (-1, 1). If <math>x = 0</math>, then <math>4 = (y - 1)^2</math>, or, equivalently, <math>\pm 2 = y -1</math>, which implies that <math>y = -1</math> or 3. The parametrized curve together with the three vectors is shown in Figure 15. Note that each of these vectors is tangent to the parabola. | |||
If a parametrization <math>P: I \rightarrow R^2</math> is differentiable at <math>t_0</math>, then we define a '''tangent vector''' to the resulting parametrized curve at <math>t_0</math> to be any scalar multiple of the derived vector <math>\mbox'''{d'''}P(t_0)</math>. In particular, the derived vector itself is a tangent vector. The set of all tangent vectors at <math>t_0</math> is a subset of <math>\mathcal{V}_{P(t_0)}</math>, since every scalar multiple of <math>\mbox'''{d'''}P(t_0)</math> has initial point <math>P(t_0)</math>. Moreover, | |||
<div id="fig 10.15" class="d-flex justify-content-center"> | |||
[[File:guide_c5467_scanfig10_15.png | 400px | thumb | ]] | |||
</div> | |||
{{proofcard|Theorem|theorem-2|The set of all tangent vectors to the parametrized curve <math>P(t)</math> at <math>t_0</math> is a vector space. | |||
|This result has nothing to do with any special properties of the derived vector, since the set of all scalar multiples of ''any'' vector <math>\mbox'''{u'''}</math> is a vector space. This result is proved, if <math>\mbox'''{u'''}</math> is nonzero, in Example 3 of Section 3. If <math>\mbox'''{u'''}</math> is a zero vector, the result is even simpler: The set of all scalar multiples of a zero vector <math>\mbox'''{0'''}</math> is the set having <math>\mbox'''{0'''}</math> as its only member, and the six conditions for a vector space are trivially satisfied. This completes the argument.}} | |||
Consider a parametrization defined by <math>P(t)= (x(f), y(t))</math>, which is differentiable at <math>t_0</math> and for which the derived vector <math>\mbox'''{d'''}P(t_0)</math> is nonzero. If we set <math>x'(t_0) = d_1</math> and <math>y'(t_0) = d_2</math>, then | |||
<math display="block"> | |||
\mbox'''{d'''}P(t_0) = (d_1, d_2)_{P(t_0)}, | |||
</math> | |||
where not both coordinates <math>d_1</math> and <math>d_2</math> are zero. The set of all tangent vectors at to is the set of all scalar multiples | |||
<math display="block"> | |||
s\mbox'''{d'''}P(t_0) = (sd_1, sd_2)_{P(t_0)}, | |||
</math> | |||
where <math>s</math> is any real number. If <math>P(t_0) = (a, b)</math>, then the terminal point of <math>s\mbox'''{d'''}P(t_0)</math> is equal to | |||
<math display="block"> | |||
(sd_1 + a, sd_2 + b). | |||
</math> | |||
Hence the set of all terminal points of tangent vectors at <math>t_0</math> is the set of all points <math>(x, y)</math> such that | |||
<span id{{=}}"eq10.4.4"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\left \{ \begin{array}{l} | |||
x = sd_1 + a,\\ | |||
y = sd_2 + b, | |||
\end{array} | |||
\right . | |||
\label{eq10.4.4} | |||
\end{equation} | |||
</math> | |||
where <math>s</math> is any real number and <math>d_1</math> and <math>d_2</math> are not both zero. It is easy to verify that this set is a straight line (see Problem 4). We conclude that ''if the derived vector $\mbox'''{d'''}P(t_0)$ exists and is nonzero, then the set of all terminal points of the tangent vectors at $to$ to the curve parametrized by $P$ is a straight line.'' It is called the '''tangent line''' to the parametrized curve at <math>t_0</math>. | |||
<span id="eq10.4.5"/> | |||
'''Example''' | |||
Consider the ellipse defined parametrically by | |||
<math display="block"> | |||
P(t) = (x(t), y(t)) = (4 \cos t, 2 \sin t), | |||
</math> | |||
for every real number <math>t</math>. Compute the derived vector at <math>t_0 = \frac{\pi}{6}</math>, and draw it and the ellipse in the <math>xy</math>-plane. In addition, write an equation for the tangent line at <math>t_0 = \frac{\pi}{6}</math>, and draw the tangent line in the figure. The derived vector is easily computed: | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
\mbox'''{d'''}P(t_0) &=& (x'(t_0), y'(t_0))_{P(t_0)} = (- 4 \sin t_0, 2 \cos t_0)_{P(t_0)} \\ | |||
&=& \Big(- 4\sin\frac{\pi}{6}, \cos\frac{\pi}{6} \Big) = (-2, \sqrt{3})_{P(t_0)}, | |||
\end{eqnarray*} | |||
</math> | |||
where | |||
<math display="block"> | |||
P(t_0) = \Big(4\cos\frac{\pi}{6}, 2 \sin\frac{\pi}{6} \Big) = (2\sqrt{3}, 1). | |||
</math> | |||
The terminal point of the derived vector is therefore equal to | |||
<math display="block"> | |||
(2\sqrt{3} - 2, 1 + \sqrt 3). | |||
</math> | |||
The parametrization <math>P</math> can also be written in terms of the equations | |||
<math display="block"> | |||
\left \{ \begin{array}{ll} | |||
x = 4 \cos t, & \\ | |||
y = 2 \sin t, \;\;\; &-\infty < t < \infty, | |||
\end{array} | |||
\right . | |||
</math> | |||
from which it follows that | |||
<math display="block"> | |||
\frac{x^2}{4^2} + \frac{y^2}{2^2} = \cos^{2} t + \sin^{2} t = 1. | |||
</math> | |||
Hence every point <math>(x, y)</math> on the parametrized curve satisfies the equation | |||
<span id{{=}}"eq10.4.5"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\frac{x^2}{4^2} + \frac{y^2}{2^2} = 1 . | |||
\label{eq10.4.5} | |||
\end{equation} | |||
</math> | |||
Conversely, it can be shown (as in Example 2, page 544) that any ordered pair <math>(x, y)</math> which satisfies (5) also lies on the parametrized curve. We recognize (5) as an equation of the ellipse shown in Figure 16. The derived vector <math>\mbox'''{d'''}P(t_0)</math> and the tangent line at <math>\frac{\pi}{6}</math> are also shown in the figure. | |||
<div id="fig 10.16" class="d-flex justify-content-center"> | |||
[[File:guide_c5467_scanfig10_16.png | 400px | thumb | ]] | |||
</div> | |||
If <math>s</math> is an arbitrary real number, then the scalar product <math>s\mbox'''{d'''}P(t_0)</math> in this example is the vector | |||
<math display="block"> | |||
s\mbox'''{d'''}P(t_0) = s(- 2, \sqrt 3)_{P(t_0)} = (- 2s, \sqrt{3} s)_{P(t_0)}. | |||
</math> | |||
The terminal point of this vector, since <math>P(t_0) = (2\sqrt{3}, 1)</math>, is the point | |||
<math display="block"> | |||
(-2s + 2\sqrt 3, \sqrt{3} s + 1). | |||
</math> | |||
Hence the tangent line at <math>\frac{\pi}{6}</math> is parametrically defined by the equations | |||
<span id{{=}}"eq10.4.6"/> | |||
<math display="block"> | |||
\begin{equation} | |||
\left \{ \begin{array}{l} | |||
x = - 2s + 2 \sqrt 3 ,\\ | |||
y= \sqrt {3} s + 1, \;\;\; -\infty < s < \infty . | |||
\end{array} | |||
\right . | |||
\label{eq10.4.6} | |||
\end{equation} | |||
</math> | |||
Solving the first of these for <math>s</math>, we obtain <math>s = \frac{-x + 2\sqrt 3}{2}</math>. Substitution in the second then yields | |||
<math display="block"> | |||
\begin{eqnarray*} | |||
y &=& \sqrt 3 \Big(\frac{-x + 2\sqrt 3}{2} \Big) + 1,\\ | |||
y &=& - \frac{\sqrt 3}{2}x + 4. \mbox{ (7)} | |||
\end{eqnarray*} | |||
</math> | |||
Thus any point on the tangent line satisfies (7), and it is easy to verify that, for any <math>x</math> and <math>y</math> which satisfy (7), there is a unique s such that equations (6) hold. We conclude that (7) is an equation of the tangent line. | |||
It is important to know that the ideas introduced in this section are consistent with related concepts developed earlier. For example, consider a differentiable parametrization defined by | |||
<math display="block"> | |||
P(t) = (x(t), y(t)), \;\;\;\mathrm{for every}~t~\mathrm{in some interval}~I. | |||
</math> | |||
Suppose that, for some <math>t_0</math> in <math>I</math>, there exists a differentiable function <math>f</math> such that | |||
<math display="block"> | |||
y(t) = f(x(t)), | |||
</math> | |||
for every <math>t</math> in some subinterval of <math>I</math> containing <math>t_0</math> in its interior. This situation was described in Section I and was illustrated in Figure 3 (page 545). If such a function <math>f</math> exists, we say that <math>y</math> is a differentiable function of <math>x</math> on the parametrized curve <math>P(t)</math> in a neighborhood of <math>P(t_0)</math>. Formulas (5) and (6), page 546, assert that, for every <math>t</math> in the subinterval, | |||
<math display="block"> | |||
\frac{dy}{dx} = f'(x(t)) = \frac{y'(t)}{x'(t)}, | |||
</math> | |||
provided <math>x'(t) \neq 0</math>. Hence <math>\frac{y'(t)}{x'(t)}</math> is the slope of the line tangent to the graph of <math>f</math> at the point | |||
<math display="block"> | |||
(x(t), f(x(t))) = (x(t), y(t)) = P(t) . | |||
</math> | |||
Moreover, in the vicinity of <math>P(t_0)</math>, the graph of <math>f</math> is the curve parametrized by <math>P</math>. At every <math>t</math> in the subinterval, the derived vector of <math>P</math> is equal to | |||
<math display="block"> | |||
\mbox'''{d'''}P(t) = (x'(t), y (t))_{P(t)} . | |||
</math> | |||
This vector is, by definition, a tangent vector to the parametrized curve. Its initial point is <math>P(t) = (x(t), y(t))</math> and its terminal point is | |||
<math display="block"> | |||
Q(t) = (x(t) + x'(t), y(t) + y'(t)). | |||
</math> | |||
The slope of the line segment joining these two points is given by | |||
<math display="block"> | |||
m(P(t), Q(t)) = \frac{(y(t) + y'(t)) - y(t)}{(x(t) + x'(t)) - x(t)} = \frac{y'(t)}{x'(t)}, | |||
</math> | |||
provided <math>x'(t) \neq 0</math>. We conclude that the concept of tangency, as defined in terms of the derived vector to a parametrized curve, is consistent with the earlier notion, defined in terms of the derivative. | |||
==General references== | |||
{{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}} |
Latest revision as of 00:41, 21 November 2024
Consider a function whose domain is a subset of the set of all real numbers and whose range is a subset of all vectors in the plane. If we denote this function by [math]\mbox'''{v'''}[/math], then its value at each number [math]t[/math] in the domain is the vector [math]\mbox'''{v'''}(t)[/math]. Every such vector-valued function [math]\mbox'''{v'''}[/math] of a real variable defines two real-valued coordinate functions [math]v_1[/math] and [math]v_2[/math] as follows: For every [math]t[/math] in the domain of [math]\mbox'''{v'''}[/math], the numbers [math]v_1(t)[/math] and [math]v_2(t)[/math] are the first and second coordinates of the vector [math]\mbox'''{v'''}(t)[/math], respectively. Hence, if the initial point of [math]\mbox'''{v'''}(t)[/math] is [math]P(t)[/math], then [math]v_1(t)[/math] and [math]v_2(t)[/math] are defined by the equation
Limits of vector-valued functions are defined in terms of limits of real-valued functions. Specifically, the limit of [math]\mbox'''{v'''}(t)[/math], as [math]t[/math] approaches [math]t_0[/math], will be denoted by [math]\lim_{t \rightarrow t_0} \mbox'''{v'''}(t)[/math] and is defined by
[For the definition of [math]\lim_{t \rightarrow t_0} P(t)[/math], see page 542.] There is the possibility that all the vectors [math]\mbox'''{v'''}(t)[/math] have the same initial point [math]P_0[/math], i.e., that they all lie in the vector space [math]\mathcal{V}_{P_0}[/math]. If this happens, (2) reduces to the simpler equation
Let [math]C[/math] be a curve in the plane defined by a parametrization [math]P: I \rightarrow R^2[/math]. If the coordinate functions of [math]P[/math] are denoted by [math]x[/math] and [math]y[/math], then [math]C[/math] is the set of all points
such that [math]t[/math] is in the interval [math]I[/math]. A typical example is shown in Figure 14. Consider a number [math]t_0[/math] in [math]I[/math]. If [math]t[/math] is in [math]I[/math] and distinct from [math]t_0[/math], then the vector [math](P(t_0), P(t))[/math] represents the change in the value of [math]P[/math] from the point [math]P(t_0)[/math] to the point [math]P(t)[/math]. Thus for a change in the value of the parameter from [math]t_0[/math] to [math]t[/math], the scalar product
is the ratio of the corresponding change in the value of [math]P[/math] to the difference [math]t - t_0[/math]. Hence the vector (3) represents an average rate of change in position with respect to a change in the parameter. In analogy with the definition of the derivative of a real-valued function, we define the derived vector of [math]P[/math] at [math]t_0[/math], denoted by [math]\mbox'''{d'''}P(t_0)[/math], by the equation
Since [math]P(t_0) = (x(t_0), y(t_0))[/math] and [math]P(t) = (x(t), y(t))[/math], the coordinate form of the vector [math](P(t_0), P(t))[/math] is given by
By the definition of the scalar product,
and so
Recall that the derivatives of the functions [math]x[/math] and [math]y[/math] at [math]t_0[/math] are by definition
provided these limits exist. It follows that
The parametrization defined by [math]P(t) = (x(t), y(t) )[/math] is differentiable at [math]t_0[/math] if and only if the derived vector [math]\mbox'''{d'''}P(t_0)[/math] exists. If it does exist, then
Example Consider the curve parametrized by
Compute the derived vectors of [math]P[/math] at [math]t_0 = - 1[/math], at [math]t_0 = 0[/math], and at [math]t_0 = 1[/math]. Draw the curve and the three derived vectors in the [math]xy[/math]-plane. As a result of (4.1), we have
Hence
The terminal points of the three derived vectors are, respectively,
The parametrized curve is a parabola, as can be seen by setting
Solving the second equation for [math]t[/math], we get [math]t = \frac{y -1}{2}[/math], and substituting this value in the first, we obtain [math]x = \frac{(y - 1)^2}{4} - 1[/math], or, equivalently,
The latter is an equation of a parabola with vertex (-1, 1). If [math]x = 0[/math], then [math]4 = (y - 1)^2[/math], or, equivalently, [math]\pm 2 = y -1[/math], which implies that [math]y = -1[/math] or 3. The parametrized curve together with the three vectors is shown in Figure 15. Note that each of these vectors is tangent to the parabola.
If a parametrization [math]P: I \rightarrow R^2[/math] is differentiable at [math]t_0[/math], then we define a tangent vector to the resulting parametrized curve at [math]t_0[/math] to be any scalar multiple of the derived vector [math]\mbox'''{d'''}P(t_0)[/math]. In particular, the derived vector itself is a tangent vector. The set of all tangent vectors at [math]t_0[/math] is a subset of [math]\mathcal{V}_{P(t_0)}[/math], since every scalar multiple of [math]\mbox'''{d'''}P(t_0)[/math] has initial point [math]P(t_0)[/math]. Moreover,
The set of all tangent vectors to the parametrized curve [math]P(t)[/math] at [math]t_0[/math] is a vector space.
This result has nothing to do with any special properties of the derived vector, since the set of all scalar multiples of any vector [math]\mbox'''{u'''}[/math] is a vector space. This result is proved, if [math]\mbox'''{u'''}[/math] is nonzero, in Example 3 of Section 3. If [math]\mbox'''{u'''}[/math] is a zero vector, the result is even simpler: The set of all scalar multiples of a zero vector [math]\mbox'''{0'''}[/math] is the set having [math]\mbox'''{0'''}[/math] as its only member, and the six conditions for a vector space are trivially satisfied. This completes the argument.
Consider a parametrization defined by [math]P(t)= (x(f), y(t))[/math], which is differentiable at [math]t_0[/math] and for which the derived vector [math]\mbox'''{d'''}P(t_0)[/math] is nonzero. If we set [math]x'(t_0) = d_1[/math] and [math]y'(t_0) = d_2[/math], then
where not both coordinates [math]d_1[/math] and [math]d_2[/math] are zero. The set of all tangent vectors at to is the set of all scalar multiples
where [math]s[/math] is any real number. If [math]P(t_0) = (a, b)[/math], then the terminal point of [math]s\mbox'''{d'''}P(t_0)[/math] is equal to
Hence the set of all terminal points of tangent vectors at [math]t_0[/math] is the set of all points [math](x, y)[/math] such that
where [math]s[/math] is any real number and [math]d_1[/math] and [math]d_2[/math] are not both zero. It is easy to verify that this set is a straight line (see Problem 4). We conclude that if the derived vector $\mbox{d}P(t_0)$ exists and is nonzero, then the set of all terminal points of the tangent vectors at $to$ to the curve parametrized by $P$ is a straight line. It is called the tangent line to the parametrized curve at [math]t_0[/math].
Example Consider the ellipse defined parametrically by
where
The parametrization [math]P[/math] can also be written in terms of the equations
If [math]s[/math] is an arbitrary real number, then the scalar product [math]s\mbox'''{d'''}P(t_0)[/math] in this example is the vector
It is important to know that the ideas introduced in this section are consistent with related concepts developed earlier. For example, consider a differentiable parametrization defined by
provided [math]x'(t) \neq 0[/math]. Hence [math]\frac{y'(t)}{x'(t)}[/math] is the slope of the line tangent to the graph of [math]f[/math] at the point
General references
Doyle, Peter G. (2008). "Crowell and Slesnick's Calculus with Analytic Geometry" (PDF). Retrieved Oct 29, 2024.