guide:0913c26ddf: Difference between revisions
No edit summary |
mNo edit summary |
||
Line 32: | Line 32: | ||
\newcommand{\mathds}{\mathbb} | \newcommand{\mathds}{\mathbb} | ||
</math></div> | </math></div> | ||
We continue to consider a given real-valued function <math>F(x)</math>, a given polynomial | We continue to consider a given real-valued function <math>F(x)</math>, a given polynomial | ||
Line 259: | Line 259: | ||
</math> | </math> | ||
We take for the particular solution <math>y_p</math> the function <math>u</math> specified by equations (7) and (8). | We take for the particular solution <math>y_p</math> the function <math>u</math> specified by equations (7) and (8). | ||
'''Example''' | '''Example''' | ||
Find the general solution of the differential equation (5), i.e., of | Find the general solution of the differential equation (5), i.e., of | ||
Line 333: | Line 335: | ||
</math> | </math> | ||
as the general solution. | as the general solution. | ||
'''Example''' | '''Example''' | ||
Find the general solution of the differential equation | Find the general solution of the differential equation | ||
Line 475: | Line 479: | ||
The method of undetermined coefficients which we have studied in this section is not applicable to all linear differential equations with constant coefficients. For example, it will not work for the equation <math>(D^2 + 2)y = \tan x</math>, because there is no polynomial <math>q(t)</math> with the property that <math>q(D)\tan x = 0</math>. Of course, this equation can be solved by replacing it by two first-order linear equations and solving these successively as in Section 3. It can also be solved by another well-known technique, called the method of ''variation of parameters,'' which we shall not discuss in this book. Finally, it is important to realize that there exist tables in which particular solutions of the equation <math>p(D)y = F(x)</math> are tabulated for a variety of functions <math>F(x)</math>. In particular, see pages 112 to 114 of the book by E. J. Cogan and R. Z. Norman, ''Handbook of Calculus, Difference and Differential Equations,'' Prentice-Hall, 2nd ed., 1963. | The method of undetermined coefficients which we have studied in this section is not applicable to all linear differential equations with constant coefficients. For example, it will not work for the equation <math>(D^2 + 2)y = \tan x</math>, because there is no polynomial <math>q(t)</math> with the property that <math>q(D)\tan x = 0</math>. Of course, this equation can be solved by replacing it by two first-order linear equations and solving these successively as in Section 3. It can also be solved by another well-known technique, called the method of ''variation of parameters,'' which we shall not discuss in this book. Finally, it is important to realize that there exist tables in which particular solutions of the equation <math>p(D)y = F(x)</math> are tabulated for a variety of functions <math>F(x)</math>. In particular, see pages 112 to 114 of the book by E. J. Cogan and R. Z. Norman, ''Handbook of Calculus, Difference and Differential Equations,'' Prentice-Hall, 2nd ed., 1963. | ||
==General references== | ==General references== | ||
{{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}} | {{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}} |
Latest revision as of 01:47, 21 November 2024
We continue to consider a given real-valued function [math]F(x)[/math], a given polynomial
with real coefficients, and the resulting differential equation
In this section our objective is to develop techniques for solving many examples of (1) quickly. This is in contrast to Section 3, where it is demonstrated that (1) can always be solved by successively solving first-order linear equations. The task of solving all these first-order equations can be extremely tedious, and we therefore look for a simpler method. The technique to be discussed is based on two premises. The first is the fact, demonstrated in Section 4, that one can write down the general solution of the associated homogeneous equation
immediately, once [math]p(t)[/math] has been factored into irreducible polynomials. The second is Theorem (4.1), page 640, which asserts that the general solution of (1) is equal to the general solution of (2) plus any particular solution of (1). Hence the problem of solving (1) reduces to that of finding any one solution. As an introductory example, consider the differential equation
The characteristic polynomial is [math]t^2 + 4t + 3[/math], which factors into the product [math](t + 1)(t + 3)[/math]. The associated homogeneous equation is therefore
and its general solution, which we shall denote by [math]y_h[/math], is given by
for arbitrary real numbers [math]c_1[/math] and [math]c_2[/math]. To obtain the general solution of (3), it remains to find a particular solution [math]y_p[/math], and any one is as good as any other. If we can find one, it follows by Theorem (4.1) that [math]y_h + y_p[/math] is the general solution of (3). Since the derivatives of polynomials are polynomials and since the right side of (3) is the polynomial [math]3x^2 + 2x - 6[/math], it is natural to seek a polynomial solution. Let us set
and try to find [math]n[/math] and coefficients [math]A_n, . . ., A_0[/math] so that [math](D^2 + 4D + 3)y_p = 3x^2 + 2x - 6[/math]. Since [math]Dy_p[/math] is a polynomial of degree [math]n - 1[/math], and [math]D^2y_p[/math] is a polynomial of degree [math]n - 2[/math], it follows that [math](D^2 + 4D + 3)y_p[/math] is a polynomial of degree [math]n[/math]. If this polynomial is to equal [math]3x^2 + 2x - 6[/math], for every [math]x[/math], then it must be the case that [math]n = 2[/math]. Hence we let
Then
and so
The right side of the preceding equation is equal to [math]3x^2 + 2x - 6[/math], for all real numbers [math]x[/math], if and only if
Solving these equations, we get [math]A = 1[/math], [math]B = - 2[/math], and [math]C = 0[/math]. The function
is therefore a particular solution of (3). It follows from Theorem (4.1) that
is the general solution, where [math]c_1[/math], and [math]c_2[/math] are arbitrary real numbers. A second example is the differential equation
The characteristic polynomial [math]t^2 + 4[/math] is irreducible with roots [math]2i[/math] and [math]-2i[/math], and the general solution [math]y_h[/math] of the associated homogeneous equation [math](D^2 + 4)y = 0[/math] is therefore given by
for arbitrary real numbers [math]c_1[/math] and [math]c_2[/math]. A particular solution [math]y_p[/math] of (4) will be any function with the property that its second derivative plus four times itself is equal to [math]3e^{5x}[/math]. Since the derivative of an exponential function is again an exponential function, an intelligent guess is that a particular solution might be a function of the form
Trying this, we obtain
and so
Obviously, [math]29Ae^{5x} = 3e^{5x}[/math] if and only if [math]A = \frac{3}{29}[/math]. Hence a particular solution of the differential equation [math](D^2 + 4)y = 3e^{5x}[/math] is
and it is a consequence of Theorem (4.1) that the general solution is
where [math]c_1[/math] and [math]c_2[/math] are arbitrary real constants. The method of finding particular solutions used in the above two examples is sometimes called the method of undetermined coefficients. For a third example, consider the differential equation
The associated homogeneous equation [math](D^2 + 4)y = 0[/math] is the same as for equation (4), and its general solution is
In attempting to find a particular solution of (5), one might reason from the experience of the preceding examples as follows: The right side is the function [math]7 \sin 2x[/math]. Since the derivatives of any function which is a linear combination of sines and cosines are functions of the same type, a reasonable candidate for a particular solution is some function [math]y_p[/math] of the form
However, when we try to determine values of the coefficients [math]A[/math] and [math]B[/math] which will make [math]y_p[/math] a solution, we find that [math](D^2 + 4)y_p = 0[/math]. This is actually not surprising, since any function of this type has already been shown to be a solution of the associated homogeneous equation. Hence we must try some other form for [math]y_p[/math]. With some ingenuity and willingness to experiment, it is not at all impossible to discover a particular solution to (5). Nevertheless, this example serves to illustrate the desirability of analyzing our technique to reduce the amount of inspiration necessary. For this purpose, we again consider the differential equation (1); i.e.,
with given function [math]F(x)[/math] and polynomial [math]p(t)[/math] of degree [math]n[/math]. To apply the method of undetermined coefficients, it is necessary that the right side of (1) is itself a solution of a homogeneous linear differential equation with constant coefficients. Hence in the discussion which follows, we make the assumption that there exists a polynomial $q(t)$ of degree m such that [math]q(D)F(x) = 0[/math]. Such a linear differential operator [math]q(D)[/math] is sometimes called an annihilator of the right side of (1). For the differential equation (3), a suitable annihilator is the operator [math]D^3[/math], since
For equation (5), whose right side is the function [math]7 \sin 2x[/math], we have [math]D(7 \sin 2x) = 14 \cos 2x[/math] and [math]D^2(7 \sin 2x) = D(14 \cos 2x) = - 4(7 \sin 2x)[/math]. Hence
and thus [math]D^2 + 4[/math] is an annihilator of the right side. Similarly, it is easy to see that
from which it follows that [math]D - 5[/math] is an annihilator of the right side of equation (4). Returning to the general case, we first observe that, if [math]y[/math] is an arbitrary solution of the differential equation (1), then
That is, every solution of (1) is also a solution of the equation
which is homogeneous and of order [math]m + n[/math]. Let us denote by [math]y_*[/math] the general solution of (6), and by [math]y_h[/math] the general solution of the associated homogeneous equation of (1), i.e., of the equation [math]p(D)y = 0[/math]. It is clear that [math]y_h[/math] is also a solution of (6). We know that [math]y_*[/math] contains [math]m + n[/math] arbitrary constants and that [math]y_h[/math] contains [math]n[/math]. It follows from the form of the general solution of a homogeneous linear differential equation with constant coefficients, as presented in Theorem (4.4), page 646, that we can write
where [math]u[/math] contains m arbitrary constants. It will follow that these are the “undetermined coefficients” of the particular solution we are seeking. Let [math]y_1[/math] be a solution of (1); i.e., [math]y[/math] is some function with the property that [math]p(D)y_1 = F(x)[/math]. Then [math]y[/math]is also a solution of (6), and so there exists a set of values for the n constants in [math]y_h[/math] and for the m constants in [math]u[/math] such that, with these values substituted, we have
Hence
Thus we have proved that there exists a set of values for the [math]m[/math] constants in [math]u[/math] such that, with these values substituted, the resulting function [math]u[/math] is a solution of the differential equation (1). Moreover, it can be proved that there is only one such set of values. Hence, as the following examples will illustrate, these “undetermined coefficients” are uniquely determined by the equation
We take for the particular solution [math]y_p[/math] the function [math]u[/math] specified by equations (7) and (8).
Example
Find the general solution of the differential equation (5), i.e., of
As indicated earlier, the general solution of the associated homogeneous equation [math](D^2 + 4)y = 0[/math] is
Moreover, we have observed that [math](D^2 + 4)7 \sin 2x = 0[/math], and therefore the operator [math]D^2 + 4[/math] is an annihilator of the right side. Hence we consider the homogeneous fourth-order equation
The general solution of this equation is given by
for arbitrary real numbers, [math]A, B, C[/math], and [math]D[/math]. It is clear that
and we therefore set
It follows that
and
Hence
Setting [math](D^2 + 4)u = 7 \sin 2x[/math], we obtain
Since this equation is to be true for all real values of [math]x[/math], we conclude that [math]4C = 0[/math] and [math]- 4A = 7[/math]. Thus [math]C = 0[/math] and [math]A = - \frac{7}{4}[/math]. It follows that the function [math]u[/math], with these values substituted for the constants, is a solution of the given differential equation. We therefore set
and obtain
as the general solution.
Example
Find the general solution of the differential equation
The characteristic polynomial is [math]t^2 + t - 2 = (t + 2)(t - 1)[/math], and the differential equation can therefore be written
The general solution of the associated homogeneous equation
is given by
The right side of the nonhomogeneous equation is the function [math]5e^{-2x}[/math]. Since [math]D(5e^{-2x}) = - 2(5e^{-2x})[/math], it follows that
and so [math]D + 2[/math] is an annihilator. We therefore consider the third-order homogeneous equation
whose general solution is
for any real numbers [math]A, B[/math], and [math]C[/math]. Recognizing that [math]Be^{-2x} + Ce^x = y_h[/math], we set
The constant [math]A[/math] is evaluated by setting [math](D^2 + D - 2)u = 5e^{-2x}[/math]. Differentiating to obtain the left side, we get
Hence
We therefore obtain the equation [math]-3Ae^{-2x} = 5e^{-2x}[/math], which implies that [math]A = - \frac{5}{3}[/math]. Hence the function [math]u[/math] obtained by substituting this value for [math]A[/math] is a particular solution. Thus we take
and it follows that the general solution is given by
for arbitrary real numbers [math]c_1[/math] and [math]c_2[/math].
Example Solve the differential equation
The characteristic polynomial is [math]t^3(t + 2)[/math], whose roots 0 and [math]-2[/math] occur with multiplicities three and one, respectively. It follows that the general solution of the associated homogeneous equation is
The right side of the given nonhomogeneous equation is [math]8x + 1[/math], and the operator [math]D^2[/math] is an annihilator, since [math]D^2(8x + 1) = 0[/math]. Hence we consider the sixth-order homogeneous equation
the general solution of which is
It is obvious that [math]y_h = Cx^2 + Dx + E + Fe^{-2x}[/math], and we set
It follows that
and so
Setting [math]D^3(D + 2)u = 8x + 1[/math], we obtain the equation
which is true for all real values of [math]x[/math] if and only if [math]A = \frac{1}{6}[/math] and [math]B = - \frac{1}{4}[/math]. It follows that a particular solution of the differential equation
is defined by
and the general solution is, therefore,
for arbitrary real numbers [math]c_1, c_2[/math], and [math]c_3[/math], and [math]c_4[/math].
The method of undetermined coefficients which we have studied in this section is not applicable to all linear differential equations with constant coefficients. For example, it will not work for the equation [math](D^2 + 2)y = \tan x[/math], because there is no polynomial [math]q(t)[/math] with the property that [math]q(D)\tan x = 0[/math]. Of course, this equation can be solved by replacing it by two first-order linear equations and solving these successively as in Section 3. It can also be solved by another well-known technique, called the method of variation of parameters, which we shall not discuss in this book. Finally, it is important to realize that there exist tables in which particular solutions of the equation [math]p(D)y = F(x)[/math] are tabulated for a variety of functions [math]F(x)[/math]. In particular, see pages 112 to 114 of the book by E. J. Cogan and R. Z. Norman, Handbook of Calculus, Difference and Differential Equations, Prentice-Hall, 2nd ed., 1963.
General references
Doyle, Peter G. (2008). "Crowell and Slesnick's Calculus with Analytic Geometry" (PDF). Retrieved Oct 29, 2024.