guide:C3b799fb83: Difference between revisions

From Stochiki
No edit summary
mNo edit summary
Line 32: Line 32:
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
</math></div>
</math></div>
\chapter*{Appendix B.  Properties of the Definite Integral}
 
Five basic properties of the definite integral are listed at the beginning of Section 4 of Chapter 4. Of these, two are proved in the text and one is left as an exercise. The remaining two will be proved here.
Five basic properties of the definite integral are listed at the beginning of Section 4 of Chapter 4. Of these, two are proved in the text and one is left as an exercise. The remaining two will be proved here.
Let <math>f</math> be a function which is bounded on a closed interval <math>[a, b]</math>. This implies that <math>[a, b]</math> is contained in the domain of <math>f</math> and that there exists a positive number <math>B</math> such that <math>|f(x)|  <  B</math> for all <math>x</math> in <math>[a, b]</math>. We recall that, for every partition <math>\sigma</math> of <math>[a, b]</math>, there are defined the upper and lower sums for <math>f</math> relative to <math>\sigma</math>, which are denoted by <math>U_\sigma</math> and <math>L_\sigma</math>, respectively. Moreover, it has been shown (see page 168) that
Let <math>f</math> be a function which is bounded on a closed interval <math>[a, b]</math>. This implies that <math>[a, b]</math> is contained in the domain of <math>f</math> and that there exists a positive number <math>B</math> such that <math>|f(x)|  <  B</math> for all <math>x</math> in <math>[a, b]</math>. We recall that, for every partition <math>\sigma</math> of <math>[a, b]</math>, there are defined the upper and lower sums for <math>f</math> relative to <math>\sigma</math>, which are denoted by <math>U_\sigma</math> and <math>L_\sigma</math>, respectively. Moreover, it has been shown (see page 168) that
Line 186: Line 186:
\int_a^b (f + g) = \int_a^b f + \int_a^b g.
\int_a^b (f + g) = \int_a^b f + \int_a^b g.
</math>
</math>
This completes the proof of Theorem 2.==General references==
This completes the proof of Theorem 2.
 
==General references==
{{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}}
{{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}}

Revision as of 01:53, 21 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Five basic properties of the definite integral are listed at the beginning of Section 4 of Chapter 4. Of these, two are proved in the text and one is left as an exercise. The remaining two will be proved here. Let [math]f[/math] be a function which is bounded on a closed interval [math][a, b][/math]. This implies that [math][a, b][/math] is contained in the domain of [math]f[/math] and that there exists a positive number [math]B[/math] such that [math]|f(x)| \lt B[/math] for all [math]x[/math] in [math][a, b][/math]. We recall that, for every partition [math]\sigma[/math] of [math][a, b][/math], there are defined the upper and lower sums for [math]f[/math] relative to [math]\sigma[/math], which are denoted by [math]U_\sigma[/math] and [math]L_\sigma[/math], respectively. Moreover, it has been shown (see page 168) that

[[math]] L_\sigma \leq L_{\sigma \cup \tau} \leq U_{\sigma \cup \tau} \leq U_\tau, ( 1 ) [[/math]]

for any two partitions [math]\sigma[/math] and [math]\tau[/math] of [math][a, b][/math]. The function [math]f[/math] is defined to be integrable over [math][a, b][/math] if there exists one and only one number, denoted [math]\int_a^b f[/math], with the property that

[[math]] L_\sigma \leq \int_a^b f \leq U_\tau , [[/math]]

for any two partitions [math]\sigma[/math] and [math]\tau[/math] of [math][a, b][/math]. It is an immediate consequence of this definition and the inequalities (1) that [math]f[/math] is integrable over [math][a, b][/math] if and only if, for any positive number [math]\epsilon[/math], there exists a partition [math]\sigma[/math] of [math][a, b][/math] such that [math]U_\sigma - L_\sigma \lt \epsilon[/math]. A similar corollary, which we shall also usebin the subsequent proofs, is the statement that [math]f[/math] is integrable over [math][a, b][/math] and [math]\int_a^b f = J[/math] if and only if, for every positive number [math]\epsilon[/math], there exists a partition [math]\sigma[/math] of [math][a, b][/math] such that [math]|U_\sigma - J| \lt \epsilon[/math] and [math]|J - L_\sigma| \lt \epsilon[/math].

The first property of the definite integral, which we shall establish in this section, is presented in the following theorem: \medskip THEOREM 1. The function [math]f[/math] is integrable over the intervals [math][a, b][/math] and [math][b, c][/math] if and only if it is integrable over their union [math][a, c][/math]. Furthermore,

[[math]] \int_a^b f + \int_b^c f = \int_a^c f. [[/math]]

\proof We first assume that [math]f[/math] is integrable over [math][a, b][/math] and over [math][b, c][/math]. Let [math]\epsilon[/math] be an arbitrary positive number. Then there exists a partition [math]\sigma_1[/math] of [math][a, b][/math], and a partition [math]\sigma_2[/math] of [math][b, c][/math] such that the following inequalities hold:

[[math]] \begin{eqnarray*} \Big| U_{\sigma_1} - \int_a^b f \Big| \lt \frac{\epsilon}{2} , \;\;\; \Big| \int_a^b - L_{\sigma_1} f \Big| \lt \frac{\epsilon}{2} , \\ \Big| U_{\sigma_2} - \int_b^c f \Big| \lt \frac{\epsilon}{2} , \;\;\; \Big| \int_b^c - L_{\sigma_2} f \Big| \lt \frac{\epsilon}{2} . \end{eqnarray*} [[/math]]

It follows from these that

[[math]] \begin{eqnarray*} \Big| (U_{\sigma_1} + U_{\sigma_2}) - \Big( \int_a^b f + \int_b^c f \Big) \Big| \lt \epsilon ,\\ \Big| \Big(\int_a^b f + \int_b^c f \Big) - \Big(L_{\sigma_1} + L_{\sigma_2} \Big) \Big| \lt \epsilon . \end{eqnarray*} [[/math]]

Let us set [math]{\sigma_1} \cup {\sigma_2} = \sigma[/math]. This union is a partition of [math][a, c][/math], and it is obvious that

[[math]] \begin{eqnarray*} U_{\sigma_1} + U_{\sigma_2} = U_\sigma, \\ L_{\sigma_1} + L_{\sigma_2} = L_\sigma . \end{eqnarray*} [[/math]]

Hence

[[math]] \begin{eqnarray*} \Big| U_\sigma - \Big(\int_a^b f + \int_b^c f \Big) \Big| \leq \epsilon, \\ \Big| \Big(\int_a^b f + \int_b^c f \Big) - L_\sigma \Big| \leq \epsilon . \end{eqnarray*} [[/math]]

These inequalities imply that [math]f[/math] is integrable over [math][a, c][/math] and also that

[[math]] \int_a^c f = \int_a^b f + \int_b^c f . [[/math]]

It remains to prove that, if [math]f[/math] is integrable over [math][a, c][/math], then it is integrable over [math][a, b][/math] and over [math][b, c][/math]. We choose an arbitrary positive number [math]\epsilon[/math]. Since [math]f[/math] is integrable over [math][a, c][/math], there exists a partition [math]\sigma[/math] of [math][a, c][/math] such that [math]U_\sigma - L_\sigma \lt \epsilon[/math]. Let us form a refinement of the partition [math]\sigma[/math] by adjoining the number [math]b[/math]. That is, we set

[[math]] \sigma' = \sigma \cup \{ b \}. [[/math]]

(It is, of course, possible that [math]\sigma[/math] already contains [math]b[/math], in which case [math]\sigma' = \sigma[/math].) Then

[[math]] L_\sigma \leq L_{\sigma'} \leq U_{\sigma'} \leq U_{\sigma'}, [[/math]]

from which it follows that [math]U_{\sigma'} - L_{\sigma'}, \lt \epsilon[/math]. But, since [math]b[/math] belongs to [math]\sigma'[/math], we can write [math]\sigma' = \sigma_1 \cup \sigma_2[/math], where [math]\sigma_1[/math] is a partition of [math][a, b][/math] and [math]\sigma_2[/math] is a partition of [math][b, c][/math]. Moreover,

[[math]] \begin{eqnarray*} U_{\sigma'} = U_{\sigma_1} + U_{\sigma_2},\\ L_{\sigma'} = L_{\sigma_1} + L_{\sigma_2} . \end{eqnarray*} [[/math]]

Hence

[[math]] (U_{\sigma_1} - L_{\sigma_1}) + (U_{\sigma_2} - L_{\sigma_2}) = U_{\sigma'} - L_{\sigma'} \lt \epsilon, [[/math]]

Since [math]U_{\sigma_1} - L_{\sigma_1}[/math] and [math]U_{\sigma_2} - L_{\sigma_2}[/math] are both nonnegative, it follows that

[[math]] \begin{eqnarray*} U_{\sigma_1} - L_{\sigma_1} \lt \epsilon,\\ U_{\sigma_2} - L_{\sigma_2} \lt \epsilon . \end{eqnarray*} [[/math]]

The first of these inequalities implies that [math]f[/math] is integrable over [math][a, b][/math], and the second that [math]f[/math] is integrable over [math][b, c][/math]. This completes the proof of Theorem 1. The second result to be proved is the following: \medskip THEOREM 2. If [math]f[/math] and [math]g[/math] are integrable over [math][a, b][/math], then so is their sum and

[[math]] \int_a^b (f + g) = \int_a^b f + \int_a^b g . [[/math]]

\medskip \proof Let [math]\epsilon[/math] be an arbitrary positive number. By taking, if necessary, the common refinement [math]\sigma_1 \cup \sigma_2[/math] of two partitions of [math][a, b][/math], we may select a partition [math]\sigma[/math] of [math][a, b][/math] such that

[[math]] \begin{array}{ll} \Big| U_\sigma^{(f)} - \int_a^b f \Big| \lt \frac{\epsilon}{2} , \;\;\;& \Big| \int_a^b f - L_\sigma^{(f)} \Big| \lt \frac{\epsilon}{2} , \\ \Big| U_\sigma^{(g)} - \int_a^b g \Big| \lt \frac{\epsilon}{2},\;\;\;& \Big| \int_a^b g - L_\sigma^{(g)} \Big| \lt \frac{\epsilon}{2} , \end{array} [[/math]]

where [math]U_\sigma^{(f)}[/math] and [math]L_\sigma^{(f)}[/math] are, respectively, the upper and lower sums for [math]f[/math] relative to [math]\sigma[/math], and [math]U_\sigma^{(g)}[/math] and [math]L_\sigma^{(g)}[/math] are the same for [math]g[/math]. We conclude from the above inequalities that

[[math]] \Big| ( U_\sigma^{(f)} + U_\sigma^{(g)} ) - \Big(\int_a^b f + \int_a^b g \Big) \Big| \lt \epsilon, ( 2 ) [[/math]]


[[math]] \Big| \Big(\int_a^b f + \int_a^b g \Big) - (L_\sigma^{(f)} + L_\sigma^{(g)}) \Big| \lt \epsilon . ( 3 ) [[/math]]

Let [math][x_{i-1}, x_i][/math] be the ith subinterval of the partition [math]\sigma[/math]. We denote by [math]M_i^{(f)}[/math] and [math]M_i^{(g)}[/math] the least upper bounds of the values of [math]f[/math] and of [math]g[/math], respectively, on [math][x_{i-1}, x_i][/math], and by [math]m_i^{(f)}[/math] and [math]m_i^{(g)}[/math] the analogous greatest lower bounds. Then

[[math]] m_i^{(f)} + m_i^{(g)} \leq f(x) + g(x) \leq M_i^{(f)} + M_i^{(g)}, [[/math]]

for every [math]x[/math] in [math][x_{i-1}, x_i][/math]. It follows that

[[math]] m_i^{(f)} + m_i^{(g)} \leq m_i^{(f+g)} \leq M_i^{(f+g)} \leq M_i^{(f)} + M_i^{(g)} , [[/math]]

where [math]m_i^{(f+g)}[/math] and [math]M_i^{(f+g)}[/math] are, respectively, the greatest lower bound and the least upper bound of the values of [math]f + g[/math] on [math][x_{i-1}, x_i][/math]. By multiplying each term in the preceding chain of inequalities by [math](x_i - x_{i-1})[/math] and then summing on [math]i[/math], we obtain

[[math]] L_\sigma^{(f)} + L_\sigma^{(g)} \leq L_\sigma^{(f+g)} \leq U_\sigma^{(f+g)} \leq U_\sigma^{(f)} + U_\sigma^{(g)}, (4 ) [[/math]]

where [math]U_\sigma^{(f+g)}[/math] and [math]L_\sigma^{(f+g)}[/math] are the upper and lower sums, respectively, for [math]f + g[/math] relative to [math]\sigma[/math]. The inequalities (2), (3), and (4) imply that

[[math]] \begin{eqnarray*} \Big| U_\sigma^{(f+g)} - \Big(\int_a^b f + \int_a^b g \Big) \Big| \lt \epsilon, \\ \Big| \Big(\int_a^b f + \int_a^b g \Big) - L_\sigma^{(f+g)} \Big| \lt \epsilon . \end{eqnarray*} [[/math]]

It follows from these two inequalities that the function [math]f + g[/math] is integrable over [math][a, b][/math] and that

[[math]] \int_a^b (f + g) = \int_a^b f + \int_a^b g. [[/math]]

This completes the proof of Theorem 2.

General references

Doyle, Peter G. (2008). "Crowell and Slesnick's Calculus with Analytic Geometry" (PDF). Retrieved Oct 29, 2024.