guide:C3b799fb83: Difference between revisions
mNo edit summary |
mNo edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 47: | Line 47: | ||
The first property of the definite integral, which we shall establish in this section, is presented in the following theorem: | The first property of the definite integral, which we shall establish in this section, is presented in the following theorem: | ||
{{proofcard|THEOREM 1 |thm-1|The function <math>f</math> is integrable over the intervals <math>[a, b]</math> and <math>[b, c]</math> if and only if it is integrable over their union <math>[a, c]</math>. Furthermore, | |||
The function <math>f</math> is integrable over the intervals <math>[a, b]</math> and <math>[b, c]</math> if and only if it is integrable over their union <math>[a, c]</math>. Furthermore, | |||
<math display="block"> | <math display="block"> | ||
\int_a^b f + \int_b^c f = \int_a^c f. | \int_a^b f + \int_b^c f = \int_a^c f. | ||
</math> | </math>|We first assume that <math>f</math> is integrable over <math>[a, b]</math> and over <math>[b, c]</math>. Let <math>\epsilon</math> be an arbitrary positive number. Then there exists a partition <math>\sigma_1</math> of <math>[a, b]</math>, and a partition <math>\sigma_2</math> of <math>[b, c]</math> such that the following inequalities hold: | ||
<math display="block"> | <math display="block"> | ||
Line 126: | Line 124: | ||
\end{eqnarray*} | \end{eqnarray*} | ||
</math> | </math> | ||
The first of these inequalities implies that <math>f</math> is integrable over <math>[a, b]</math>, and the second that <math>f</math> is integrable over <math>[b, c]</math>. This completes the proof of Theorem 1. | The first of these inequalities implies that <math>f</math> is integrable over <math>[a, b]</math>, and the second that <math>f</math> is integrable over <math>[b, c]</math>. This completes the proof of Theorem 1.}} | ||
The second result to be proved is the following: | The second result to be proved is the following: | ||
{{proofcard|THEOREM 2|thm-2|If <math>f</math> and <math>g</math> are integrable over <math>[a, b]</math>, then so is their sum and | |||
If <math>f</math> and <math>g</math> are integrable over <math>[a, b]</math>, then so is their sum and | |||
<math display="block"> | <math display="block"> | ||
\int_a^b (f + g) = \int_a^b f + \int_a^b g . | \int_a^b (f + g) = \int_a^b f + \int_a^b g . | ||
</math> | </math>|Let <math>\epsilon</math> be an arbitrary positive number. By taking, if necessary, the common refinement <math>\sigma_1 \cup \sigma_2</math> of two partitions of <math>[a, b]</math>, we may select a partition <math>\sigma</math> of <math>[a, b]</math> such that | ||
<math display="block"> | <math display="block"> | ||
Line 186: | Line 181: | ||
\int_a^b (f + g) = \int_a^b f + \int_a^b g. | \int_a^b (f + g) = \int_a^b f + \int_a^b g. | ||
</math> | </math> | ||
This completes the proof of Theorem 2. | This completes the proof of Theorem 2.}} | ||
==General references== | ==General references== | ||
{{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}} | {{cite web |title=Crowell and Slesnick’s Calculus with Analytic Geometry|url=https://math.dartmouth.edu/~doyle/docs/calc/calc.pdf |last=Doyle |first=Peter G.|date=2008 |access-date=Oct 29, 2024}} |
Latest revision as of 02:07, 21 November 2024
Five basic properties of the definite integral are listed at the beginning of Section 4 of Chapter 4. Of these, two are proved in the text and one is left as an exercise. The remaining two will be proved here. Let [math]f[/math] be a function which is bounded on a closed interval [math][a, b][/math]. This implies that [math][a, b][/math] is contained in the domain of [math]f[/math] and that there exists a positive number [math]B[/math] such that [math]|f(x)| \lt B[/math] for all [math]x[/math] in [math][a, b][/math]. We recall that, for every partition [math]\sigma[/math] of [math][a, b][/math], there are defined the upper and lower sums for [math]f[/math] relative to [math]\sigma[/math], which are denoted by [math]U_\sigma[/math] and [math]L_\sigma[/math], respectively. Moreover, it has been shown (see page 168) that
for any two partitions [math]\sigma[/math] and [math]\tau[/math] of [math][a, b][/math]. The function [math]f[/math] is defined to be integrable over [math][a, b][/math] if there exists one and only one number, denoted [math]\int_a^b f[/math], with the property that
for any two partitions [math]\sigma[/math] and [math]\tau[/math] of [math][a, b][/math]. It is an immediate consequence of this definition and the inequalities (1) that [math]f[/math] is integrable over [math][a, b][/math] if and only if, for any positive number [math]\epsilon[/math], there exists a partition [math]\sigma[/math] of [math][a, b][/math] such that [math]U_\sigma - L_\sigma \lt \epsilon[/math]. A similar corollary, which we shall also usebin the subsequent proofs, is the statement that [math]f[/math] is integrable over [math][a, b][/math] and [math]\int_a^b f = J[/math] if and only if, for every positive number [math]\epsilon[/math], there exists a partition [math]\sigma[/math] of [math][a, b][/math] such that [math]|U_\sigma - J| \lt \epsilon[/math] and [math]|J - L_\sigma| \lt \epsilon[/math].
The first property of the definite integral, which we shall establish in this section, is presented in the following theorem:
The function [math]f[/math] is integrable over the intervals [math][a, b][/math] and [math][b, c][/math] if and only if it is integrable over their union [math][a, c][/math]. Furthermore,
We first assume that [math]f[/math] is integrable over [math][a, b][/math] and over [math][b, c][/math]. Let [math]\epsilon[/math] be an arbitrary positive number. Then there exists a partition [math]\sigma_1[/math] of [math][a, b][/math], and a partition [math]\sigma_2[/math] of [math][b, c][/math] such that the following inequalities hold:
It remains to prove that, if [math]f[/math] is integrable over [math][a, c][/math], then it is integrable over [math][a, b][/math] and over [math][b, c][/math]. We choose an arbitrary positive number [math]\epsilon[/math]. Since [math]f[/math] is integrable over [math][a, c][/math], there exists a partition [math]\sigma[/math] of [math][a, c][/math] such that [math]U_\sigma - L_\sigma \lt \epsilon[/math]. Let us form a refinement of the partition [math]\sigma[/math] by adjoining the number [math]b[/math]. That is, we set
The second result to be proved is the following:
If [math]f[/math] and [math]g[/math] are integrable over [math][a, b][/math], then so is their sum and
Let [math]\epsilon[/math] be an arbitrary positive number. By taking, if necessary, the common refinement [math]\sigma_1 \cup \sigma_2[/math] of two partitions of [math][a, b][/math], we may select a partition [math]\sigma[/math] of [math][a, b][/math] such that
General references
Doyle, Peter G. (2008). "Crowell and Slesnick's Calculus with Analytic Geometry" (PDF). Retrieved Oct 29, 2024.