exercise:Aeba932c2b: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 33: Line 33:
</math></div>
</math></div>
Prove the following facts about inequalities.
Prove the following facts about inequalities.
[''Hint:''\ [[guide:A5dd35d44b#axiom.viii [[guide:A5dd35d44b#axiom.ix [[guide:A5dd35d44b#axiom.x [[guide:A5dd35d44b#thm 1.1.1 ||||Use]],]],]],]],
 
and the meanings of <math>\geq</math> and <math>\leq</math>.
In each problem you will have to consider several cases separately,
e.g. <math>a  >  0</math> and <math>a = 0</math>.]
<ul style{{=}}"list-style-type:lower-alpha"><li>If <math>a \leq b</math>, then <math>a + c \leq b + c</math>.</li>
<ul style{{=}}"list-style-type:lower-alpha"><li>If <math>a \leq b</math>, then <math>a + c \leq b + c</math>.</li>
<li>If <math>a \geq b</math>, then <math>a + c \geq b + c</math>.</li>
<li>If <math>a \geq b</math>, then <math>a + c \geq b + c</math>.</li>

Latest revision as of 23:23, 22 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Prove the following facts about inequalities.

  • If [math]a \leq b[/math], then [math]a + c \leq b + c[/math].
  • If [math]a \geq b[/math], then [math]a + c \geq b + c[/math].
  • If [math]a \leq b[/math] and [math]c \geq 0[/math], then [math]ac \leq bc[/math].
  • If [math]a \leq b[/math] and [math] c \leq 0[/math], then [math]ac \geq bc[/math].