exercise:11b69f4519: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 36: | Line 36: | ||
<li>Which of the constants <math>a</math>, <math>b</math>, and <math>c</math> determines | <li>Which of the constants <math>a</math>, <math>b</math>, and <math>c</math> determines | ||
the type of extreme point of the graph?</li> | the type of extreme point of the graph?</li> | ||
<li> | <li> | ||
What is the extreme value of | What is the extreme value of | ||
<math>ax^2 + bx + c</math>?</li> | <math>ax^2 + bx + c</math>?</li> | ||
<li>Write <math>ax^2 + bx + c</math> as <math>a \left( x^2 + \frac ba x \right) + c</math>, | <li>Write <math>ax^2 + bx + c</math> as <math>a \left( x^2 + \frac ba x \right) + c</math>, complete the square on <math>x^2 + \frac ba x</math> without changing the function, and find the result of (c) algebraically.</li> | ||
complete the square on <math>x^2 + \frac ba x</math> without changing | |||
the function, and find the result of | |||
</ul> | </ul> |
Latest revision as of 00:39, 23 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
- Show that the graph of the function [math]ax^2 + bx + c, a \ne 0[/math], always has an absolute extreme point.
- Which of the constants [math]a[/math], [math]b[/math], and [math]c[/math] determines the type of extreme point of the graph?
- What is the extreme value of [math]ax^2 + bx + c[/math]?
- Write [math]ax^2 + bx + c[/math] as [math]a \left( x^2 + \frac ba x \right) + c[/math], complete the square on [math]x^2 + \frac ba x[/math] without changing the function, and find the result of (c) algebraically.