exercise:C5f086dc94: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 32: | Line 32: | ||
\newcommand{\mathds}{\mathbb} | \newcommand{\mathds}{\mathbb} | ||
</math></div> | </math></div> | ||
<ul style{{=}}"list-style-type:lower-alpha" | <ul style{{=}}"list-style-type:lower-alpha"> | ||
<li> | <li>Graph the set of ordered pairs <math>(x,y)</math> such that | ||
Graph the set of ordered pairs <math>(x,y)</math> such that | |||
<math>4x^2 + y^2 = 8</math>. The graph is called an ellipse.</li> | <math>4x^2 + y^2 = 8</math>. The graph is called an ellipse.</li> | ||
<li>Find all ordered pairs <math>(x,y)</math>, such that <math>4x^2 + y^2 = 8</math> | <li>Find all ordered pairs <math>(x,y)</math>, such that <math>4x^2 + y^2 = 8</math> | ||
Line 40: | Line 39: | ||
<li>Find the dimensions of the largest (in area) rectangle which | <li>Find the dimensions of the largest (in area) rectangle which | ||
has sides parallel to the <math>x</math>-axis and the <math>y</math>-axis and is | has sides parallel to the <math>x</math>-axis and the <math>y</math>-axis and is | ||
inscribed in the ellipse of | inscribed in the ellipse of (a).</li> | ||
</ul> | </ul> |
Latest revision as of 23:43, 22 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
- Graph the set of ordered pairs [math](x,y)[/math] such that [math]4x^2 + y^2 = 8[/math]. The graph is called an ellipse.
- Find all ordered pairs [math](x,y)[/math], such that [math]4x^2 + y^2 = 8[/math] and [math]4xy[/math] is a maximum.
- Find the dimensions of the largest (in area) rectangle which has sides parallel to the [math]x[/math]-axis and the [math]y[/math]-axis and is inscribed in the ellipse of (a).