exercise:A2f2d0a292: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 35: | Line 35: | ||
<math display="block"> | <math display="block"> | ||
f(x) = \ | f(x) = \begin{cases}\frac1x, \textrm{for} \quad \begin{cases}-1 \leq x < 0,\\ 0 < x \leq 1,\end{cases}\\ | ||
0, \mbox{for $x = 0$}.\end{cases} | |||
</math> | </math> | ||
This real-valued function is defined on the closed interval < | |||
Draw the graph of < | This real-valued function is defined on the closed interval <math>[-1,1]</math>. Draw the graph of <math>f(x)</math> and explain why this function has neither absolute maximum nor absolute minimum points. | ||
absolute maximum nor absolute minimum points. |
Latest revision as of 00:54, 23 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
Let
[[math]]
f(x) = \begin{cases}\frac1x, \textrm{for} \quad \begin{cases}-1 \leq x \lt 0,\\ 0 \lt x \leq 1,\end{cases}\\
0, \mbox{for $x = 0$}.\end{cases}
[[/math]]
This real-valued function is defined on the closed interval [math][-1,1][/math]. Draw the graph of [math]f(x)[/math] and explain why this function has neither absolute maximum nor absolute minimum points.