exercise:51f2a3cd55: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 32: Line 32:
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
</math></div>
</math></div>
At <math>3</math> \textsc{p.m.} a ship which is sailing due south at <math>12</math> knots
At 3 PM a ship which is sailing due south at <math>12</math> knots
is <math>5</math> miles west of a west-bound hip which is making <math>16</math> knots.
is <math>5</math> miles west of a west-bound hip which is making <math>16</math> knots.
<ul style{{=}}"list-style-type:lower-alpha"><li>At what rate is the distance between the ships changing at <math>3</math>
<ul style{{=}}"list-style-type:lower-alpha"><li>At what rate is the distance between the ships changing at 3 PM?</li>
\textsc{p.m.}?</li>
<li>At what time does the distance between the ships stop decreasing
<li>At what time does the distance between the ships stop decreasing
and start increasing?</li>
and start increasing?</li>
<li>What is the shortest distance between the ships?</li>
<li>What is the shortest distance between the ships?</li>
</ul>
</ul>

Latest revision as of 00:01, 23 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

At 3 PM a ship which is sailing due south at [math]12[/math] knots is [math]5[/math] miles west of a west-bound hip which is making [math]16[/math] knots.

  • At what rate is the distance between the ships changing at 3 PM?
  • At what time does the distance between the ships stop decreasing and start increasing?
  • What is the shortest distance between the ships?