exercise:D762fbe9db: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 32: Line 32:
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
</math></div>
</math></div>
Draw the graph of the function <math>f</math> defined by
Draw the graph of the function <math>f</math> defined by
<math>f(x) = \frac1x</math>,
<math>f(x) = \frac1x</math>, and answer the following questions.
and answer the following questions.
<ul style{{=}}"list-style-type:lower-alpha"><li>Is <math>f</math> bounded on the open interval <math>[2,5]</math>??</li>
<ul style{{=}}"list-style-type:lower-alpha"><li></math>?</li>
<li>Is <math>f</math> bounded on the open interval <math>(2,5)</math>?</li>
<li>Is <math>f</math> bounded on the open interval <math>(2,5)</math>?</li>
<li>Does <math>f</math> have an upper bound on the interval <math>(0,2)</math>?
<li>Does <math>f</math> have an upper bound on the interval <math>(0,2)</math>?

Latest revision as of 00:56, 23 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Draw the graph of the function [math]f[/math] defined by [math]f(x) = \frac1x[/math], and answer the following questions.

  • Is [math]f[/math] bounded on the open interval [math][2,5][/math]??
  • Is [math]f[/math] bounded on the open interval [math](2,5)[/math]?
  • Does [math]f[/math] have an upper bound on the interval [math](0,2)[/math]? If so, give one.
  • Does [math]f[/math] have a lower bound on the interval [math](0,2)[/math]? If so, give one.