exercise:8f84d58d25: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 34: | Line 34: | ||
Consider a function <math>f</math> which is integrable over | Consider a function <math>f</math> which is integrable over | ||
<math>[a,b]</math> and which, in addition, satisfies: | <math>[a,b]</math> and which, in addition, satisfies: | ||
#<math>f</math> is continuous at every point of <math>[a,b]</math>. | |||
#<math>f(x) \geq 0</math>, for every <math>x</math> in <math>[a,b]</math>. | |||
#<math>f(c) > 0</math> for at least one point <math>c</math> in <math>[a,b]</math>. | |||
Prove that <math>\int_a^b f(x) \; dx > 0</math>. | Prove that <math>\int_a^b f(x) \; dx > 0</math>. |
Latest revision as of 20:39, 23 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
Consider a function [math]f[/math] which is integrable over [math][a,b][/math] and which, in addition, satisfies:
- [math]f[/math] is continuous at every point of [math][a,b][/math].
- [math]f(x) \geq 0[/math], for every [math]x[/math] in [math][a,b][/math].
- [math]f(c) \gt 0[/math] for at least one point [math]c[/math] in [math][a,b][/math].
Prove that [math]\int_a^b f(x) \; dx \gt 0[/math].