exercise:B0046b0c67: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 37: | Line 37: | ||
<math>\dydx = -ky</math>. The latter equation is similar to | <math>\dydx = -ky</math>. The latter equation is similar to | ||
<math>\dydx = y</math>, which has <math>e^x</math> for a solution. | <math>\dydx = y</math>, which has <math>e^x</math> for a solution. | ||
With this similarity in mind, | With this similarity in mind, it is not hard to guess, and then verify, that <math>y = e^{-kx}</math> is a solution to the original equation. | ||
it is not hard to guess, and then verify, | The problem is now to show that ''every'' solution is a constant multiple of | ||
that <math>y = e^{-kx}</math> is a solution to the original equation. | <math>e^{-kx}</math>. Prove this fact by assuming that <math>y = f(x)</math> is an arbitrary solution of <math>\dydx + ky = 0</math> and then showing that the derivative of the quotient <math>\frac{f(x)}{e^{-kx}}</math> is zero. | ||
The problem is now to show that ''every'' | |||
solution is a constant multiple of | |||
<math>e^{-kx}</math>. Prove this fact by assuming that <math>y = f(x)</math> | |||
is an arbitrary solution of | |||
<math>\dydx + ky = 0</math> and then showing that the derivative | |||
of the quotient <math>\frac{f(x)}{e^{-kx}}</math> is zero. | |||
Latest revision as of 23:02, 23 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
An alternative approach to solving the linear differential equation [math]\dydx + ky = 0[/math] is to write it as [math]\dydx = -ky[/math]. The latter equation is similar to [math]\dydx = y[/math], which has [math]e^x[/math] for a solution. With this similarity in mind, it is not hard to guess, and then verify, that [math]y = e^{-kx}[/math] is a solution to the original equation. The problem is now to show that every solution is a constant multiple of [math]e^{-kx}[/math]. Prove this fact by assuming that [math]y = f(x)[/math] is an arbitrary solution of [math]\dydx + ky = 0[/math] and then showing that the derivative of the quotient [math]\frac{f(x)}{e^{-kx}}[/math] is zero.