exercise:Cb67d8e6a0: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 32: | Line 32: | ||
\newcommand{\mathds}{\mathbb} | \newcommand{\mathds}{\mathbb} | ||
</math></div> | </math></div> | ||
<ul style{{=}}"list-style-type:lower-alpha" | <ul style{{=}}"list-style-type:lower-alpha"> | ||
<li> | <li>Use [[guide:A8f4ffd76f#theorem-5|theorem]] to write a formula for | ||
Use | |||
<math>\cos 2a</math> in terms of <math>\cos a</math> and <math>\sin a</math>.</li> | <math>\cos 2a</math> in terms of <math>\cos a</math> and <math>\sin a</math>.</li> | ||
<li>Similarly, use | <li>Similarly, use [[guide:A8f4ffd76f#theorem-7|theorem]] to write a formula | ||
for <math>\sin 2a</math>.</li> | for <math>\sin 2a</math>.</li> | ||
<li>Write a formula for <math>\cos a</math> and another | <li>Write a formula for <math>\cos a</math> and another for <math>\sin a</math> in terms of <math>\cos \frac a2</math> and <math>\sin \frac a2</math>.</li> | ||
for <math>\sin a</math> in terms of | |||
<math>\cos \frac a2</math> and <math>\sin \frac a2</math>.</li> | |||
</ul> | </ul> |
Latest revision as of 00:12, 24 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
- Use theorem to write a formula for [math]\cos 2a[/math] in terms of [math]\cos a[/math] and [math]\sin a[/math].
- Similarly, use theorem to write a formula for [math]\sin 2a[/math].
- Write a formula for [math]\cos a[/math] and another for [math]\sin a[/math] in terms of [math]\cos \frac a2[/math] and [math]\sin \frac a2[/math].