exercise:Cb67d8e6a0: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 32: Line 32:
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
</math></div>
</math></div>
<ul style{{=}}"list-style-type:lower-alpha"><li></li>
<ul style{{=}}"list-style-type:lower-alpha">
<li>lab{6.1.8a}
<li>Use [[guide:A8f4ffd76f#theorem-5|theorem]] to write a formula for
Use \ref{thm 6.1.5} to write a formula for
<math>\cos 2a</math> in terms of <math>\cos a</math> and <math>\sin a</math>.</li>
<math>\cos 2a</math> in terms of <math>\cos a</math> and <math>\sin a</math>.</li>
<li>Similarly, use \ref{thm 6.1.7} to write a formula
<li>Similarly, use [[guide:A8f4ffd76f#theorem-7|theorem]] to write a formula
for <math>\sin 2a</math>.</li>
for <math>\sin 2a</math>.</li>
<li>Write a formula for <math>\cos a</math> and another
<li>Write a formula for <math>\cos a</math> and another for <math>\sin a</math> in terms of <math>\cos \frac a2</math> and <math>\sin \frac a2</math>.</li>
for <math>\sin a</math> in terms of
<math>\cos \frac a2</math> and <math>\sin \frac a2</math>.</li>
</ul>
</ul>

Latest revision as of 00:12, 24 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]
  • Use theorem to write a formula for [math]\cos 2a[/math] in terms of [math]\cos a[/math] and [math]\sin a[/math].
  • Similarly, use theorem to write a formula for [math]\sin 2a[/math].
  • Write a formula for [math]\cos a[/math] and another for [math]\sin a[/math] in terms of [math]\cos \frac a2[/math] and [math]\sin \frac a2[/math].