exercise:86ed3ad9f7: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 32: | Line 32: | ||
\newcommand{\mathds}{\mathbb} | \newcommand{\mathds}{\mathbb} | ||
</math></div> | </math></div> | ||
<ul style{{=}}"list-style-type:lower-alpha" | <ul style{{=}}"list-style-type:lower-alpha"> | ||
<li> | <li> | ||
Solve the homogeneous differential equation | Solve the homogeneous differential equation | ||
Line 40: | Line 40: | ||
. | . | ||
</math></li> | </math></li> | ||
<li> | <li> | ||
Substitute the linear polynomial <math>Ax+B</math> for <math>y</math> | Substitute the linear polynomial <math>Ax+B</math> for <math>y</math> | ||
in the nonhomogeneous differential equation | in the nonhomogeneous differential equation | ||
Line 53: | Line 52: | ||
of the differential equation.</li> | of the differential equation.</li> | ||
<li>Show that the function which is the sum of the | <li>Show that the function which is the sum of the | ||
solutions found in | solutions found in (a) and (b) is also a solution to the | ||
differential equation in (b).</li> | |||
differential equation in | |||
</ul> | </ul> |
Latest revision as of 02:00, 24 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
-
Solve the homogeneous differential equation
[[math]] \deriv2y - 8 \dydx + 12y = 0 . [[/math]]
-
Substitute the linear polynomial [math]Ax+B[/math] for [math]y[/math]
in the nonhomogeneous differential equation
[[math]] \deriv2y - 8\dydx + 12y = 24x + 12 . [[/math]]Hence find values of [math]A[/math] and [math]B[/math] for which this polynomial is a particular solution of the differential equation.
- Show that the function which is the sum of the solutions found in (a) and (b) is also a solution to the differential equation in (b).