exercise:86ed3ad9f7: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 32: Line 32:
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
</math></div>
</math></div>
<ul style{{=}}"list-style-type:lower-alpha"><li></li>
<ul style{{=}}"list-style-type:lower-alpha">
<li>lab{6.8.9a}
<li>
Solve the homogeneous differential equation
Solve the homogeneous differential equation


Line 40: Line 40:
.
.
</math></li>
</math></li>
<li></li>
<li>
<li>lab{6.8.9b}
Substitute the linear polynomial <math>Ax+B</math> for <math>y</math>
Substitute the linear polynomial <math>Ax+B</math> for <math>y</math>
in the nonhomogeneous differential equation
in the nonhomogeneous differential equation
Line 53: Line 52:
of the differential equation.</li>
of the differential equation.</li>
<li>Show that the function which is the sum of the
<li>Show that the function which is the sum of the
solutions found in \ref{ex6.8.9a} and
solutions found in (a) and (b) is also a solution to the
\ref{ex6.8.9b} is also a solution to the
differential equation in (b).</li>
differential equation in \ref{ex6.8.9b}.</li>
</ul>
</ul>

Latest revision as of 02:00, 24 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]
  • Solve the homogeneous differential equation
    [[math]] \deriv2y - 8 \dydx + 12y = 0 . [[/math]]
  • Substitute the linear polynomial [math]Ax+B[/math] for [math]y[/math] in the nonhomogeneous differential equation
    [[math]] \deriv2y - 8\dydx + 12y = 24x + 12 . [[/math]]
    Hence find values of [math]A[/math] and [math]B[/math] for which this polynomial is a particular solution of the differential equation.
  • Show that the function which is the sum of the solutions found in (a) and (b) is also a solution to the differential equation in (b).