exercise:6d28ed3164: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 32: | Line 32: | ||
\newcommand{\mathds}{\mathbb} | \newcommand{\mathds}{\mathbb} | ||
</math></div> | </math></div> | ||
Sketch the region <math>R</math> in the plane which is | |||
bounded by the parabola <math>(y-1)^2 = x</math>, | Sketch the region <math>R</math> in the plane which is bounded by the parabola <math>(y-1)^2 = x</math>, the line <math>y=2</math>, and the <math>x</math>-axis and | ||
the line <math>y=2</math>, and the <math>x</math>-axis and | <math>y</math>-axis. Find the volume of the solid of revolution obtained by rotating <math>R</math> about the <math>x</math>-axis, using | ||
<math>y</math>-axis. Find the volume of the solid of | |||
revolution obtained by rotating <math>R</math> about | <ul style{{=}}"list-style-type:lower-alpha"><li> [[guide:Dba66870a5#theorem-2|formula]] twice, i.e., <math>\pi \int_a^b y^2dx</math> once with <math>y-1=\sqrt{x}</math> and again with <math>y-1=-\sqrt{x}</math>.</li> | ||
the <math>x</math>-axis, using | <li>the counterpart of [[guide:Dba66870a5#theorem-3|formula]], i.e., the method of cylindrical shells, | ||
<ul style{{=}}"list-style-type:lower-alpha"><li>formula | |||
<math>\pi \int_a^b y^2dx</math> once with <math>y-1=\sqrt{x}</math> | |||
and again with <math>y-1=-\sqrt{x}</math>.</li> | |||
<li>the counterpart of formula | |||
the method of cylindrical shells, | |||
for functions of <math>y</math>.</li> | for functions of <math>y</math>.</li> | ||
</ul> | </ul> |
Latest revision as of 01:15, 25 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
Sketch the region [math]R[/math] in the plane which is bounded by the parabola [math](y-1)^2 = x[/math], the line [math]y=2[/math], and the [math]x[/math]-axis and [math]y[/math]-axis. Find the volume of the solid of revolution obtained by rotating [math]R[/math] about the [math]x[/math]-axis, using