exercise:6d28ed3164: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
(One intermediate revision by the same user not shown)
Line 32: Line 32:
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
</math></div>
</math></div>
Sketch the region <math>R</math> in the plane which is
 
bounded by the parabola <math>(y-1)^2 = x</math>,
Sketch the region <math>R</math> in the plane which is bounded by the parabola <math>(y-1)^2 = x</math>, the line <math>y=2</math>, and the <math>x</math>-axis and
the line <math>y=2</math>, and the <math>x</math>-axis and
<math>y</math>-axis.  Find the volume of the solid of revolution obtained by rotating <math>R</math> about the <math>x</math>-axis, using
<math>y</math>-axis.  Find the volume of the solid of
 
revolution obtained by rotating <math>R</math> about
<ul style{{=}}"list-style-type:lower-alpha"><li> [[guide:Dba66870a5#theorem-2|formula]] twice, i.e., <math>\pi \int_a^b y^2dx</math> once with <math>y-1=\sqrt{x}</math> and again with <math>y-1=-\sqrt{x}</math>.</li>
the <math>x</math>-axis, using
<li>the counterpart of [[guide:Dba66870a5#theorem-3|formula]], i.e., the method of cylindrical shells,
<ul style{{=}}"list-style-type:lower-alpha"><li>formula \ref{thm 8.4.2} twice, i.e.,
<math>\pi \int_a^b y^2dx</math> once with <math>y-1=\sqrt{x}</math>
and again with <math>y-1=-\sqrt{x}</math>.</li>
<li>the counterpart of formula \ref{thm 8.4.3}, i.e.,
the method of cylindrical shells,
for functions of <math>y</math>.</li>
for functions of <math>y</math>.</li>
</ul>
</ul>

Latest revision as of 01:15, 25 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Sketch the region [math]R[/math] in the plane which is bounded by the parabola [math](y-1)^2 = x[/math], the line [math]y=2[/math], and the [math]x[/math]-axis and [math]y[/math]-axis. Find the volume of the solid of revolution obtained by rotating [math]R[/math] about the [math]x[/math]-axis, using

  • formula twice, i.e., [math]\pi \int_a^b y^2dx[/math] once with [math]y-1=\sqrt{x}[/math] and again with [math]y-1=-\sqrt{x}[/math].
  • the counterpart of formula, i.e., the method of cylindrical shells, for functions of [math]y[/math].