exercise:69f1d54288: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 55: Line 55:
(i) its absolute value agrees with the above
(i) its absolute value agrees with the above
prescription, and (ii) its sign agrees with the
prescription, and (ii) its sign agrees with the
convention given at the beginning of \secref{8.5}.]
convention given at the beginning of [[guide:1e0788c035|work]].]

Latest revision as of 01:45, 25 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Suppose that a straight cylindrical hole is bored from the surface of the earth through the center and out the other side. An object of mass [math]m[/math] inside the hole and at a distance [math]r[/math] from the center of the earth is attracted to the center by a gravitational force equal in absolute value to [math]\frac{mgr}{R}[/math], where [math]g[/math] is constant and [math]R[/math] is the radius of the earth. Compute the work done by this force of gravity in terms of [math]m[/math], [math]g[/math], and [math]R[/math] as the object falls

  • from the surface to the center of the earth,
  • from the surface of the earth through the center to a point halfway between the center and surface on the other side,
  • all the way through the hole from surface to surface.

[Hint: Let the [math]x[/math]-axis be the axis of the cylinder, and the origin the center of the earth. Define the gravitational force [math]F(x)[/math] acting on the object at [math]x[/math] so that: (i) its absolute value agrees with the above prescription, and (ii) its sign agrees with the convention given at the beginning of work.]