exercise:69f1d54288: Difference between revisions
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 55: | Line 55: | ||
(i) its absolute value agrees with the above | (i) its absolute value agrees with the above | ||
prescription, and (ii) its sign agrees with the | prescription, and (ii) its sign agrees with the | ||
convention given at the beginning of | convention given at the beginning of [[guide:1e0788c035|work]].] |
Latest revision as of 01:45, 25 November 2024
Suppose that a straight cylindrical hole is bored from the surface of the earth through the center and out the other side. An object of mass [math]m[/math] inside the hole and at a distance [math]r[/math] from the center of the earth is attracted to the center by a gravitational force equal in absolute value to [math]\frac{mgr}{R}[/math], where [math]g[/math] is constant and [math]R[/math] is the radius of the earth. Compute the work done by this force of gravity in terms of [math]m[/math], [math]g[/math], and [math]R[/math] as the object falls
- from the surface to the center of the earth,
- from the surface of the earth through the center to a point halfway between the center and surface on the other side,
- all the way through the hole from surface to surface.
[Hint: Let the [math]x[/math]-axis be the axis of the cylinder, and the origin the center of the earth. Define the gravitational force [math]F(x)[/math] acting on the object at [math]x[/math] so that: (i) its absolute value agrees with the above prescription, and (ii) its sign agrees with the convention given at the beginning of work.]