exercise:De51de9d34: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 31: Line 31:
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
\newcommand{\dilemma}[2] {
\left\{
\begin{array}{ll}
#1 \\
#2
\end{array}
\right.
}
\newcommand{\trilemma}[3] {
\left\{
\begin{array}{ll}
#1 \\
#2 \\
#3
\end{array}
\right.
}
</math></div>
</math></div>
Draw the graph of <math>f</math>, and evaluate
Draw the graph of <math>f</math>, and evaluate
<math>\int_a^b f(x) \; dx</math> in each of the
<math>\int_a^b f(x) \; dx</math> in each of the
following examples.
following examples.
<ul style{{=}}"list-style-type:lower-alpha"><li><math>\trilemma{1 & \mbox{if </math>-\infty  <  x \leq 0<math>},}
<ul style{{=}}"list-style-type:lower-alpha"><li><math>\trilemma{1 & \mbox{if $-\infty  <  x \leq 0 $},}
{5 & \mbox{if </math>0  <  x  <  2<math>},}
{5 & \mbox{if $0  <  x  <  2$},}
{3 & \mbox{if </math>2 \leq x  <  \infty<math>},}</math>
{3 & \mbox{if $2 \leq x  <  \infty $},}</math>
and <math>[a,b] = [-3,3]</math>.</li>
and <math>[a,b] = [-3,3]</math>.</li>
<li><math>f(x) = \dilemma{x^2&\mbox{if </math>-\infty < x < 0<math>},}
<li><math>f(x) = \dilemma{x^2&\mbox{if $-\infty < x < 0 $},}
{2-x^2&\mbox{if </math>0\leq x < \infty<math>},}</math>
{2-x^2&\mbox{if $0\leq x < \infty$},}</math>
and <math>[a,b] = [-2,2]</math>.</li>
and <math>[a,b] = [-2,2]</math>.</li>
<li><math>f(x) = n</math> \quad if <math>n \leq x  <  n+1</math>
<li><math>f(x) = n \quad</math>   if <math>n \leq x  <  n+1</math>
where <math>n</math> is any integer,
where <math>n</math> is any integer,
and <math>[a,b] = [0,5]</math>.</li>
and <math>[a,b] = [0,5]</math>.</li>
</ul>
</ul>

Latest revision as of 02:45, 25 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} \newcommand{\dilemma}[2] { \left\{ \begin{array}{ll} #1 \\ #2 \end{array} \right. } \newcommand{\trilemma}[3] { \left\{ \begin{array}{ll} #1 \\ #2 \\ #3 \end{array} \right. } [/math]

Draw the graph of [math]f[/math], and evaluate [math]\int_a^b f(x) \; dx[/math] in each of the following examples.

  • [math]\trilemma{1 & \mbox{if $-\infty \lt x \leq 0 $},} {5 & \mbox{if $0 \lt x \lt 2$},} {3 & \mbox{if $2 \leq x \lt \infty $},}[/math] and [math][a,b] = [-3,3][/math].
  • [math]f(x) = \dilemma{x^2&\mbox{if $-\infty \lt x \lt 0 $},} {2-x^2&\mbox{if $0\leq x \lt \infty$},}[/math] and [math][a,b] = [-2,2][/math].
  • [math]f(x) = n \quad[/math] if [math]n \leq x \lt n+1[/math] where [math]n[/math] is any integer, and [math][a,b] = [0,5][/math].