exercise:D3c4ffc03c: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 32: Line 32:
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
</math></div>
</math></div>
Prove that if <math>f</math> is bounded on <math>(a,b]</math> and integrable
Prove that if <math>f</math> is bounded on <math>(a,b]</math> and integrable over <math>[t,b]</math> for every <math>t</math> in <math>(a,b]</math>, then <math>f</math> is integrable over <math>[a,b]</math> and <math>\lim_{t\goesto a+} \int_t^b f = \int_a^b f</math>.
over <math>[t,b]</math> for every <math>t</math> in <math>(a,b]</math>, then <math>f</math>
 
is integrable over <math>[a,b]</math> and
[''Hint:'' The argument is essentially the same as that in the proof of [[guide:F22a4e9424#theorem-1|Theorem]].]
<math>\lim_{t\goesto a+} \int_t^b f = \int_a^b f</math>.
[''Hint:'' The argument is essentially the same
as that in the proof of Theorem \ref{thm 8.6.1}.]

Latest revision as of 02:47, 25 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Prove that if [math]f[/math] is bounded on [math](a,b][/math] and integrable over [math][t,b][/math] for every [math]t[/math] in [math](a,b][/math], then [math]f[/math] is integrable over [math][a,b][/math] and [math]\lim_{t\goesto a+} \int_t^b f = \int_a^b f[/math].

[Hint: The argument is essentially the same as that in the proof of Theorem.]