exercise:B672c151e2: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 31: | Line 31: | ||
\newcommand{\conj}[1]{\overline{#1}} | \newcommand{\conj}[1]{\overline{#1}} | ||
\newcommand{\mathds}{\mathbb} | \newcommand{\mathds}{\mathbb} | ||
\newcommand{\dilemma}[2] { | |||
\left\{ | |||
\begin{array}{ll} | |||
#1 \\ | |||
#2 | |||
\end{array} | |||
\right. | |||
} | |||
\newcommand{\trilemma}[3] { | |||
\left\{ | |||
\begin{array}{ll} | |||
#1 \\ | |||
#2 \\ | |||
#3 | |||
\end{array} | |||
\right. | |||
} | |||
</math></div> | </math></div> | ||
Let <math>r</math> be a real number, | |||
and consider the sequence <math>1, r, r^2, r^3, \ldots.</math> | Let <math>r</math> be a real number, and consider the sequence <math>1, r, r^2, r^3, \ldots.</math> | ||
Show that the sequence converges if and only | Show that the sequence converges if and only | ||
if <math>-1 < r \leq 1</math>, and that | if <math>-1 < r \leq 1</math>, and that | ||
Line 40: | Line 58: | ||
\lim_{n\goesto\infty} r^n = | \lim_{n\goesto\infty} r^n = | ||
\trilemma{0 & \mbox{if $-1 < r < 1$,}} | \trilemma{0 & \mbox{if $-1 < r < 1$,}} | ||
{1 & \mbox{if | {1 & \mbox{if $r=1$,}} | ||
{\infty & \mbox{if | {\infty & \mbox{if $r > 1$.}} | ||
</math> | </math> | ||
What is the behavior of the sequence for | What is the behavior of the sequence for |
Latest revision as of 02:56, 25 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
\newcommand{\dilemma}[2] {
\left\{
\begin{array}{ll}
#1 \\
#2
\end{array}
\right.
}
\newcommand{\trilemma}[3] {
\left\{
\begin{array}{ll}
#1 \\
#2 \\
#3
\end{array}
\right.
}
[/math]
Let [math]r[/math] be a real number, and consider the sequence [math]1, r, r^2, r^3, \ldots.[/math] Show that the sequence converges if and only if [math]-1 \lt r \leq 1[/math], and that
[[math]]
\lim_{n\goesto\infty} r^n =
\trilemma{0 & \mbox{if $-1 \lt r \lt 1$,}}
{1 & \mbox{if $r=1$,}}
{\infty & \mbox{if $r \gt 1$.}}
[[/math]]
What is the behavior of the sequence for [math]r=-1[/math] and for [math]r \lt -1[/math]? (Hint: Let [math]r^n = e^{n \ln r}[/math], for [math]r \gt 0[/math].)