exercise:F87b221fb0: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 31: Line 31:
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
\newcommand{\dilemma}[2] {
\left\{
\begin{array}{ll}
#1 \\
#2
\end{array}
\right.
}
\newcommand{\trilemma}[3] {
\left\{
\begin{array}{ll}
#1 \\
#2 \\
#3
\end{array}
\right.
}
\newcommand{\cond}[1] {
\begin{array}{ll}
#1
\end{array}
}
</math></div>
</math></div>
Determine whether or not each of the following
Determine whether or not each of the following sequences <math>\{ s_n \}</math> converges, and, if it does,
sequences <math>\{ s_n \}</math> converges, and, if it does,
evaluate the limit.
evaluate the limit.
<ul style{{=}}"list-style-type:lower-alpha"><li><math>\cond{s_n = (-1)^n, & n=1,2,\ldots.}</math></li>
<ul style{{=}}"list-style-type:lower-alpha"><li><math>\cond{s_n = (-1)^n, & n=1,2,\ldots.}</math></li>
<li><math>s_n = \dilemma{1+\frac1n, & \mbox{for every integer
<li><math>s_n = \dilemma{1+\frac1n, & \mbox{for every integer
</math>n<math> such that </math>1 \leq n \leq 10<math>,}}
$n$ such that $1 \leq n \leq 10$,}}
{1, & \mbox{for every integer </math>n > 10<math>.}}</math></li>
{1, & \mbox{for every integer $n > 10$.}}</math></li>
<li><math>s_n  = \dilemma{1+\frac1n, & \mbox{if </math>n<math> is
<li><math>s_n  = \dilemma{1+\frac1n, & \mbox{if $n$is
a positive even integer,}}
a positive even integer,}}
{1, & \mbox{if </math>n<math> is a positive odd integer.}}</math></li>
{1, & \mbox{if $n$ is a positive odd integer.}}</math></li>
<li><math>s_n = \dilemma{1+\frac1n, & \mbox{for every
<li><math>s_n = \dilemma{1+\frac1n, & \mbox{for every
integer </math>n<math> such that </math>1 \leq n \leq 10<math>,}}
integer $n$ such that $1 \leq n \leq 10 $,}}
{2, & \mbox{for every integer </math>n  >  10<math>.}}</math></li>
{2, & \mbox{for every integer $n  >  10$.}}</math></li>
</ul>
</ul>

Latest revision as of 03:00, 25 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} \newcommand{\dilemma}[2] { \left\{ \begin{array}{ll} #1 \\ #2 \end{array} \right. } \newcommand{\trilemma}[3] { \left\{ \begin{array}{ll} #1 \\ #2 \\ #3 \end{array} \right. } \newcommand{\cond}[1] { \begin{array}{ll} #1 \end{array} } [/math]

Determine whether or not each of the following sequences [math]\{ s_n \}[/math] converges, and, if it does, evaluate the limit.

  • [math]\cond{s_n = (-1)^n, & n=1,2,\ldots.}[/math]
  • [math]s_n = \dilemma{1+\frac1n, & \mbox{for every integer $n$ such that $1 \leq n \leq 10$,}} {1, & \mbox{for every integer $n \gt 10$.}}[/math]
  • [math]s_n = \dilemma{1+\frac1n, & \mbox{if $n$is a positive even integer,}} {1, & \mbox{if $n$ is a positive odd integer.}}[/math]
  • [math]s_n = \dilemma{1+\frac1n, & \mbox{for every integer $n$ such that $1 \leq n \leq 10 $,}} {2, & \mbox{for every integer $n \gt 10$.}}[/math]