exercise:45efbb7a43: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 34: Line 34:
Let <math>f</math> and <math>g</math> be the two functions defined in
Let <math>f</math> and <math>g</math> be the two functions defined in
Problem [[exercise:7bc859a7a4 |Exercise]] (see also Problem [[exercise:0cba72917a |Exercise]]).
Problem [[exercise:7bc859a7a4 |Exercise]] (see also Problem [[exercise:0cba72917a |Exercise]]).
<ul style{{=}}"list-style-type:lower-alpha"><li></li>
<ul style{{=}}"list-style-type:lower-alpha">
<li>lab{9.7.7a}
<li>
Evaluate <math>f(0)</math>, <math>f^\prime(0)</math>, <math>g(0)</math>,
Evaluate <math>f(0)</math>, <math>f^\prime(0)</math>, <math>g(0)</math>,
and <math>g^\prime(0)</math>.</li>
and <math>g^\prime(0)</math>.</li>
<li></li>
<li>
<li>lab{9.7.7b}
Show that <math>f</math> and <math>g</math> are both solutions of the
Show that <math>f</math> and <math>g</math> are both solutions of the
differential equation <math>\frac{d^2y}{dx^2} + y = 0</math>.</li>
differential equation <math>\frac{d^2y}{dx^2} + y = 0</math>.</li>
<li>Write the general solution of the differential equation
<li>Write the general solution of the differential equation
in \ref{ex9.7.7b}, and thence, using the results of
in (b), and thence, using the results of
part \ref{ex9.7.7a}, show that <math>f(x) = \sin x</math>
part (a), show that <math>f(x) = \sin x</math>
and that <math>g(x) = \cos x</math>.</li>
and that <math>g(x) = \cos x</math>.</li>
</ul>
</ul>

Latest revision as of 03:18, 25 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Let [math]f[/math] and [math]g[/math] be the two functions defined in Problem Exercise (see also Problem Exercise).

  • Evaluate [math]f(0)[/math], [math]f^\prime(0)[/math], [math]g(0)[/math], and [math]g^\prime(0)[/math].
  • Show that [math]f[/math] and [math]g[/math] are both solutions of the differential equation [math]\frac{d^2y}{dx^2} + y = 0[/math].
  • Write the general solution of the differential equation in (b), and thence, using the results of part (a), show that [math]f(x) = \sin x[/math] and that [math]g(x) = \cos x[/math].