exercise:45efbb7a43: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 34: | Line 34: | ||
Let <math>f</math> and <math>g</math> be the two functions defined in | Let <math>f</math> and <math>g</math> be the two functions defined in | ||
Problem [[exercise:7bc859a7a4 |Exercise]] (see also Problem [[exercise:0cba72917a |Exercise]]). | Problem [[exercise:7bc859a7a4 |Exercise]] (see also Problem [[exercise:0cba72917a |Exercise]]). | ||
<ul style{{=}}"list-style-type:lower-alpha" | <ul style{{=}}"list-style-type:lower-alpha"> | ||
<li> | <li> | ||
Evaluate <math>f(0)</math>, <math>f^\prime(0)</math>, <math>g(0)</math>, | Evaluate <math>f(0)</math>, <math>f^\prime(0)</math>, <math>g(0)</math>, | ||
and <math>g^\prime(0)</math>.</li> | and <math>g^\prime(0)</math>.</li> | ||
<li> | <li> | ||
Show that <math>f</math> and <math>g</math> are both solutions of the | Show that <math>f</math> and <math>g</math> are both solutions of the | ||
differential equation <math>\frac{d^2y}{dx^2} + y = 0</math>.</li> | differential equation <math>\frac{d^2y}{dx^2} + y = 0</math>.</li> | ||
<li>Write the general solution of the differential equation | <li>Write the general solution of the differential equation | ||
in | in (b), and thence, using the results of | ||
part | part (a), show that <math>f(x) = \sin x</math> | ||
and that <math>g(x) = \cos x</math>.</li> | and that <math>g(x) = \cos x</math>.</li> | ||
</ul> | </ul> |
Latest revision as of 03:18, 25 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
Let [math]f[/math] and [math]g[/math] be the two functions defined in Problem Exercise (see also Problem Exercise).
- Evaluate [math]f(0)[/math], [math]f^\prime(0)[/math], [math]g(0)[/math], and [math]g^\prime(0)[/math].
- Show that [math]f[/math] and [math]g[/math] are both solutions of the differential equation [math]\frac{d^2y}{dx^2} + y = 0[/math].
- Write the general solution of the differential equation in (b), and thence, using the results of part (a), show that [math]f(x) = \sin x[/math] and that [math]g(x) = \cos x[/math].