exercise:Ebcf5c84f1: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 31: | Line 31: | ||
\newcommand{\conj}[1]{\overline{#1}} | \newcommand{\conj}[1]{\overline{#1}} | ||
\newcommand{\mathds}{\mathbb} | \newcommand{\mathds}{\mathbb} | ||
\newcommand{\dilemma}[2] { | |||
\left\{ | |||
\begin{array}{ll} | |||
#1 \\ | |||
#2 | |||
\end{array} | |||
\right. | |||
} | |||
\newcommand{\trilemma}[3] { | |||
\left\{ | |||
\begin{array}{ll} | |||
#1 \\ | |||
#2 \\ | |||
#3 | |||
\end{array} | |||
\right. | |||
} | |||
</math></div> | </math></div> | ||
For each of the following parametrization, | For each of the following parametrization, | ||
Line 36: | Line 54: | ||
graph is the parametrized curve | graph is the parametrized curve | ||
<ul style{{=}}"list-style-type:lower-alpha"><li><math>P(t) = (t^2,t)</math>, \quad <math>-\infty < t < \infty</math>.</li> | <ul style{{=}}"list-style-type:lower-alpha"><li><math>P(t) = (t^2,t)</math>, \quad <math>-\infty < t < \infty</math>.</li> | ||
<li> | <li> | ||
<math>\dilemma{x=e^{3t},}{y=e^t, & -\infty < t < \infty.}</math></li> | <math>\dilemma{x=e^{3t},}{y=e^t, & -\infty < t < \infty.}</math></li> | ||
<li> | <li> | ||
<math>\dilemma{x=e^t+e^{-t},} | <math>\dilemma{x=e^t+e^{-t},} | ||
{y=e^t-e^{-t}, & -\infty < t < \infty.}</math></li> | {y=e^t-e^{-t}, & -\infty < t < \infty.}</math></li> | ||
</ul> | </ul> | ||
[For | |||
will need in addition to the equation | [For (b) and (c), you will need in addition to the equation <math>F(x,y) = c</math>, the inequality <math>x > 0</math>.] | ||
<math>F(x,y) = c</math>, the inequality <math>x > 0</math>.] |
Latest revision as of 20:43, 25 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
\newcommand{\dilemma}[2] {
\left\{
\begin{array}{ll}
#1 \\
#2
\end{array}
\right.
}
\newcommand{\trilemma}[3] {
\left\{
\begin{array}{ll}
#1 \\
#2 \\
#3
\end{array}
\right.
}
[/math]
For each of the following parametrization, find an equation [math]F(x,y) = c[/math] whose graph is the parametrized curve
- [math]P(t) = (t^2,t)[/math], \quad [math]-\infty \lt t \lt \infty[/math].
- [math]\dilemma{x=e^{3t},}{y=e^t, & -\infty \lt t \lt \infty.}[/math]
- [math]\dilemma{x=e^t+e^{-t},} {y=e^t-e^{-t}, & -\infty \lt t \lt \infty.}[/math]
[For (b) and (c), you will need in addition to the equation [math]F(x,y) = c[/math], the inequality [math]x \gt 0[/math].]