exercise:E32a469470: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 31: Line 31:
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
\newcommand{\dilemma}[2] {
\left\{
\begin{array}{ll}
#1 \\
#2
\end{array}
\right.
}
\newcommand{\trilemma}[3] {
\left\{
\begin{array}{ll}
#1 \\
#2 \\
#3
\end{array}
\right.
}
</math></div>
</math></div>
Find the arc lengths of the following parametrized
Find the arc lengths of the following parametrized
curves.
curves.
<ul style{{=}}"list-style-type:lower-alpha"><li><math>\dilemma{x = t+1,}
<ul style{{=}}"list-style-type:lower-alpha"><li><math>\dilemma{x = t+1,}
{y = t^{\frac32}, & \mbox{from </math>(2,1)<math> to </math>(5,8)<math>.}}</math></li>
{y = t^{\frac32}, & \mbox{from $(2,1)$ to $(5,8)$.}}</math></li>
<li><math>\dilemma{x = t^2,}
<li><math>\dilemma{x = t^2,}
{y = \frac23 (2t+1)^\frac32, &  
{y = \frac23 (2t+1)^\frac32, &  
\mbox{from </math>\left(x(0),y(0)\right) = (0, \frac23)<math> to
\mbox{from $\left(x(0),y(0)\right) = (0, \frac23)$ to
to </math>\left(x(4), y(4)\right) = (16,18)<math>.}}</math></li>
to $\left(x(4), y(4)\right) = (16,18)$.}}</math></li>
<li><math>P(t) = (t^2, t^3)</math>, \quad from <math>P(0)</math> to <math>P(2)</math>.</li>
<li><math>P(t) = (t^2, t^3)</math>, \quad from <math>P(0)</math> to <math>P(2)</math>.</li>
<li><math>\dilemma{x(\theta) = a \cos^3\theta, & a > 0,}
<li><math>\dilemma{x(\theta) = a \cos^3\theta, & a > 0,}
{y(\theta) = a \sin^3\theta, &  
{y(\theta) = a \sin^3\theta, &  
\mbox{from </math>\left(x(0), y(0)\right) = (a,0)<math> to
\mbox{from $\left(x(0), y(0)\right) = (a,0)$ to
</math>\left(x(\frac{\pi}2), y(\frac{\pi}2)\right) = (0,a)<math>.}}</math></li>
$\left(x(\frac{\pi}2), y(\frac{\pi}2)\right) = (0,a)$.}}</math></li>
</ul>
</ul>

Latest revision as of 21:58, 25 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} \newcommand{\dilemma}[2] { \left\{ \begin{array}{ll} #1 \\ #2 \end{array} \right. } \newcommand{\trilemma}[3] { \left\{ \begin{array}{ll} #1 \\ #2 \\ #3 \end{array} \right. } [/math]

Find the arc lengths of the following parametrized curves.

  • [math]\dilemma{x = t+1,} {y = t^{\frac32}, & \mbox{from $(2,1)$ to $(5,8)$.}}[/math]
  • [math]\dilemma{x = t^2,} {y = \frac23 (2t+1)^\frac32, & \mbox{from $\left(x(0),y(0)\right) = (0, \frac23)$ to to $\left(x(4), y(4)\right) = (16,18)$.}}[/math]
  • [math]P(t) = (t^2, t^3)[/math], \quad from [math]P(0)[/math] to [math]P(2)[/math].
  • [math]\dilemma{x(\theta) = a \cos^3\theta, & a \gt 0,} {y(\theta) = a \sin^3\theta, & \mbox{from $\left(x(0), y(0)\right) = (a,0)$ to $\left(x(\frac{\pi}2), y(\frac{\pi}2)\right) = (0,a)$.}}[/math]