exercise:D7bea31ae5: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 31: Line 31:
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
\newcommand{\dilemma}[2] {
\left\{
\begin{array}{ll}
#1 \\
#2
\end{array}
\right.
}
\newcommand{\trilemma}[3] {
\left\{
\begin{array}{ll}
#1 \\
#2 \\
#3
\end{array}
\right.
}
</math></div>
</math></div>
The same curve can be defined by
The same curve can be defined by more than one parametrization:
more than one parametrization:
 
<ul style{{=}}"list-style-type:lower-alpha"><li></li>
<ul style{{=}}"list-style-type:lower-alpha">
<li>lab{10.2.7a}
<li>
Draw the curve defined parametrically by
Draw the curve defined parametrically by


Line 41: Line 59:
\dilemma{x(t) = t,}{y(t) = t, & 0 \leq t \leq 1.}
\dilemma{x(t) = t,}{y(t) = t, & 0 \leq t \leq 1.}
</math></li>
</math></li>
<li></li>
<li>
<li>lab{10.2.7b}
Draw the curve defined parametrically by
Draw the curve defined parametrically by


Line 48: Line 65:
\dilemma{x(t) = \sin\pi t,}{y(t) = \sin\pi t, & 0 \leq t \leq 1.}
\dilemma{x(t) = \sin\pi t,}{y(t) = \sin\pi t, & 0 \leq t \leq 1.}
</math></li>
</math></li>
<li>Compute the arc lengths from <math>t=0</math> to <math>t=1</math>
<li>Compute the arc lengths from <math>t=0</math> to <math>t=1</math> for the parametrizations in (a) and (b).</li>
for the parametrizations in \ref{ex10.2.7a}
<li>Give a geometric interpretation which explains the difference between the arc lengths obtained for the two parametrizations.</li>
and \ref{ex10.2.7b}.</li>
<li>Give a geometric interpretation which explains
the difference between the arc lengths
obtained for the two parametrizations.</li>
</ul>
</ul>

Latest revision as of 22:28, 25 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} \newcommand{\dilemma}[2] { \left\{ \begin{array}{ll} #1 \\ #2 \end{array} \right. } \newcommand{\trilemma}[3] { \left\{ \begin{array}{ll} #1 \\ #2 \\ #3 \end{array} \right. } [/math]

The same curve can be defined by more than one parametrization:

  • Draw the curve defined parametrically by
    [[math]] \dilemma{x(t) = t,}{y(t) = t, & 0 \leq t \leq 1.} [[/math]]
  • Draw the curve defined parametrically by
    [[math]] \dilemma{x(t) = \sin\pi t,}{y(t) = \sin\pi t, & 0 \leq t \leq 1.} [[/math]]
  • Compute the arc lengths from [math]t=0[/math] to [math]t=1[/math] for the parametrizations in (a) and (b).
  • Give a geometric interpretation which explains the difference between the arc lengths obtained for the two parametrizations.