exercise:39ba8c90c5: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 32: Line 32:
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
</math></div>
</math></div>
Let <math>P:[a,b] \goesto \R^2</math> and <math>Q:[c,d]\goesto R^2</math>
Let <math>P:[a,b] \goesto \R^2</math> and <math>Q:[c,d]\goesto R^2</math> be two parametrizations of the same curve <math>C</math> such that all four coordinate functions are continuously differentiable.
be two parametrizations of the same curve
(A function is '''continuously differentiable '''if its derivative exists and is continuous at every number in its domain.)
<math>C</math> such that all four coordinate functions
Then <math>P</math> and <math>Q</math> are called '''equivalent parametrizations''' of <math>C</math> if there exists a continuously differentiable function <math>f</math> with domain <math>[a,b]</math> and range <math>[c,d]</math> which has a continuously differentiable inverse function, and in addition satisfies
are continuously differentiable.
(A function is '''continuously differentiable'''
if its derivative exists and is continuous at
every number in its domain.)
Then <math>P</math> and <math>Q</math> are called
'''equivalent parametrizations''' of <math>C</math>
if there exists a continuously differentiable
function <math>f</math> with domain <math>[a,b]</math> and range <math>[c,d]</math>
which has a continuously differentiable inverse
function, and in addition satisfies
(i) <math>f(a) = c</math> and <math>f(b) = d</math>,
(i) <math>f(a) = c</math> and <math>f(b) = d</math>,
(ii) <math>P(t) = Q(f(t)),</math> for every <math>t</math> in <math>[a,b]</math>.
(ii) <math>P(t) = Q(f(t)),</math> for every <math>t</math> in <math>[a,b]</math>.
<ul style{{=}}"list-style-type:lower-alpha"><li>Using the Chain Rule and the Change of Variable
<ul style{{=}}"list-style-type:lower-alpha"><li>Using the Chain Rule and the Change of Variable
Theorem for Definite Integrals
Theorem for Definite Integrals (for the latter, see ([[guide:Eb0a63a097#theorem-6|Theorem]]), prove that equivalent parametrizations assign the same arc length to <math>C</math>.</li>
(for the latter, see Theorem \ref{thm 4.6.6}),
prove that equivalent parametrizations assign
the same arc length to <math>C</math>.</li>
<li>Show that
<li>Show that



Latest revision as of 22:38, 25 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Let [math]P:[a,b] \goesto \R^2[/math] and [math]Q:[c,d]\goesto R^2[/math] be two parametrizations of the same curve [math]C[/math] such that all four coordinate functions are continuously differentiable. (A function is continuously differentiable if its derivative exists and is continuous at every number in its domain.) Then [math]P[/math] and [math]Q[/math] are called equivalent parametrizations of [math]C[/math] if there exists a continuously differentiable function [math]f[/math] with domain [math][a,b][/math] and range [math][c,d][/math] which has a continuously differentiable inverse function, and in addition satisfies (i) [math]f(a) = c[/math] and [math]f(b) = d[/math], (ii) [math]P(t) = Q(f(t)),[/math] for every [math]t[/math] in [math][a,b][/math].

  • Using the Chain Rule and the Change of Variable Theorem for Definite Integrals (for the latter, see (Theorem), prove that equivalent parametrizations assign the same arc length to [math]C[/math].
  • Show that
    [[math]] P(t) = (\cos t, \sin t), \quad 0 \leq t \leq \frac{\pi}2 , [[/math]]
    [[math]] Q(s) = \left( \frac{1-s^2}{1+s^2}, \frac{2s}{1+s^2}\right), \quad 0 \leq s \leq 1 , [[/math]]
    are equivalent parametrizations of the same curve [math]C[/math], and identify the curve.
  • Show that
    [[math]] P(t) = (\cos t, \sin t), \quad 0 \leq t \leq 2\pi , [[/math]]
    and
    [[math]] Q(s) = (\cos 5t, \sin 5t), \quad 0 \leq t \leq 2\pi , [[/math]]
    are nonequivalent parametrizations of the circle.