exercise:83665fb974: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 35: | Line 35: | ||
Compute the terminal point of each of the following | Compute the terminal point of each of the following | ||
vectors, and draw each one as an arrow in the | vectors, and draw each one as an arrow in the | ||
<math>xy</math>-plane. The vectors <math>\vec u</math> and <math>\vec v</math> | <math>xy</math>-plane. The vectors <math>\vec u</math> and <math>\vec v</math> in parts (b), (c), (d), and (e) are defined | ||
in parts | as in part (a). | ||
as in part | <ul style{{=}}"list-style-type:lower-alpha"> | ||
<ul style{{=}}"list-style-type:lower-alpha" | <li> | ||
<li> | |||
<math>\vec u = (3,-2)_P</math> and <math>\vec v = (1,1)_P</math></li> | <math>\vec u = (3,-2)_P</math> and <math>\vec v = (1,1)_P</math></li> | ||
<li> | <li> | ||
<math>\vec u + \vec v</math></li> | <math>\vec u + \vec v</math></li> | ||
<li> | <li> | ||
<math>\vec u - \vec v</math></li> | <math>\vec u - \vec v</math></li> | ||
<li> | <li> | ||
<math>3\vec v</math></li> | <math>3\vec v</math></li> | ||
<li> | <li> | ||
<math>\vec u + 3\vec v</math>.</li> | <math>\vec u + 3\vec v</math>.</li> | ||
</ul> | </ul> |
Latest revision as of 22:47, 25 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
Let [math]P = (2,1)[/math]. Compute the terminal point of each of the following vectors, and draw each one as an arrow in the [math]xy[/math]-plane. The vectors [math]\vec u[/math] and [math]\vec v[/math] in parts (b), (c), (d), and (e) are defined as in part (a).
- [math]\vec u = (3,-2)_P[/math] and [math]\vec v = (1,1)_P[/math]
- [math]\vec u + \vec v[/math]
- [math]\vec u - \vec v[/math]
- [math]3\vec v[/math]
- [math]\vec u + 3\vec v[/math].