exercise:83665fb974: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 35: Line 35:
Compute the terminal point of each of the following
Compute the terminal point of each of the following
vectors, and draw each one as an arrow in the
vectors, and draw each one as an arrow in the
<math>xy</math>-plane.  The vectors <math>\vec u</math> and <math>\vec v</math>
<math>xy</math>-plane.  The vectors <math>\vec u</math> and <math>\vec v</math> in parts (b), (c), (d), and (e) are defined
in parts \ref{ex10.3.2b}, \ref{ex10.3.2c},
as in part (a).
\ref{ex10.3.2d}, and \ref{ex10.3.2e} are defined
 
as in part \ref{ex10.3.2a}.
<ul style{{=}}"list-style-type:lower-alpha">
<ul style{{=}}"list-style-type:lower-alpha"><li></li>
<li>
<li>lab{10.3.2a}
<math>\vec u = (3,-2)_P</math> and <math>\vec v = (1,1)_P</math></li>
<math>\vec u = (3,-2)_P</math> and <math>\vec v = (1,1)_P</math></li>
<li></li>
<li>
<li>lab{10.3.2b}
<math>\vec u + \vec v</math></li>
<math>\vec u + \vec v</math></li>
<li></li>
<li>
<li>lab{10.3.2c}
<math>\vec u - \vec v</math></li>
<math>\vec u - \vec v</math></li>
<li></li>
<li>
<li>lab{10.3.2d}
<math>3\vec v</math></li>
<math>3\vec v</math></li>
<li></li>
<li>
<li>lab{10.3.2e}
<math>\vec u + 3\vec v</math>.</li>
<math>\vec u + 3\vec v</math>.</li>
</ul>
</ul>

Latest revision as of 22:47, 25 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Let [math]P = (2,1)[/math]. Compute the terminal point of each of the following vectors, and draw each one as an arrow in the [math]xy[/math]-plane. The vectors [math]\vec u[/math] and [math]\vec v[/math] in parts (b), (c), (d), and (e) are defined as in part (a).

  • [math]\vec u = (3,-2)_P[/math] and [math]\vec v = (1,1)_P[/math]
  • [math]\vec u + \vec v[/math]
  • [math]\vec u - \vec v[/math]
  • [math]3\vec v[/math]
  • [math]\vec u + 3\vec v[/math].