exercise:06b7e017f4: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 32: Line 32:
\newcommand{\mathds}{\mathbb}
\newcommand{\mathds}{\mathbb}
</math></div>
</math></div>
<ul style{{=}}"list-style-type:lower-alpha"><li></li>
<ul style{{=}}"list-style-type:lower-alpha">
<li>lab{10.7.12a}
<li>
Using the integral formula for arc length in polar
Using the integral formula for arc length in polar
coordinates, compute the arc length of the polar
coordinates, compute the arc length of the polar
graph of the equation <math>r=2\sec \theta</math> from
graph of the equation <math>r=2\sec \theta</math> from
<math>\theta = -\frac\pi4</math> to <math>\theta=\frac\pi4</math>.</li>
<math>\theta = -\frac\pi4</math> to <math>\theta=\frac\pi4</math>.</li>
<li>Identify and draw the curve in part \ref{ex10.7.12a},
<li>Identify and draw the curve in part (a),
and verify from the geometry the value obtained
and verify from the geometry the value obtained
for the arc length.</li>
for the arc length.</li>
</ul>
</ul>

Latest revision as of 00:26, 26 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]
  • Using the integral formula for arc length in polar coordinates, compute the arc length of the polar graph of the equation [math]r=2\sec \theta[/math] from [math]\theta = -\frac\pi4[/math] to [math]\theta=\frac\pi4[/math].
  • Identify and draw the curve in part (a), and verify from the geometry the value obtained for the arc length.