exercise:06b7e017f4: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 32: | Line 32: | ||
\newcommand{\mathds}{\mathbb} | \newcommand{\mathds}{\mathbb} | ||
</math></div> | </math></div> | ||
<ul style{{=}}"list-style-type:lower-alpha" | <ul style{{=}}"list-style-type:lower-alpha"> | ||
<li> | <li> | ||
Using the integral formula for arc length in polar | Using the integral formula for arc length in polar | ||
coordinates, compute the arc length of the polar | coordinates, compute the arc length of the polar | ||
graph of the equation <math>r=2\sec \theta</math> from | graph of the equation <math>r=2\sec \theta</math> from | ||
<math>\theta = -\frac\pi4</math> to <math>\theta=\frac\pi4</math>.</li> | <math>\theta = -\frac\pi4</math> to <math>\theta=\frac\pi4</math>.</li> | ||
<li>Identify and draw the curve in part | <li>Identify and draw the curve in part (a), | ||
and verify from the geometry the value obtained | and verify from the geometry the value obtained | ||
for the arc length.</li> | for the arc length.</li> | ||
</ul> | </ul> |
Latest revision as of 00:26, 26 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
- Using the integral formula for arc length in polar coordinates, compute the arc length of the polar graph of the equation [math]r=2\sec \theta[/math] from [math]\theta = -\frac\pi4[/math] to [math]\theta=\frac\pi4[/math].
- Identify and draw the curve in part (a), and verify from the geometry the value obtained for the arc length.