exercise:6a06e3b9a0: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 34: Line 34:
This problem is the general version of the preceding
This problem is the general version of the preceding
one.  Let <math>P</math> and <math>Q</math> be continuous functions of <math>x</math>.
one.  Let <math>P</math> and <math>Q</math> be continuous functions of <math>x</math>.
<ul style{{=}}"list-style-type:lower-alpha"><li></li>
<ul style{{=}}"list-style-type:lower-alpha">
<li>lab{11.2.3a}
<li>
Find the general solution <math>y_h</math> of the homogeneous
Find the general solution <math>y_h</math> of the homogeneous
differential equation <math>\dydx + Py = 0</math>.</li>
differential equation <math>\dydx + Py = 0</math>.</li>
<li>Show that the general solution of the nonhomogeneous
<li>Show that the general solution of the nonhomogeneous
equation <math>\dydx +Py = Q</math> is equal to the solution
equation <math>\dydx +Py = Q</math> is equal to the solution
<math>y_h</math> in part \ref{ex11.2.3a} plus a particular solution
<math>y_h</math> in part (a) plus a particular solution
to the nonhomogeneous equation.</li>
to the nonhomogeneous equation.</li>
</ul>
</ul>

Latest revision as of 01:11, 26 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

This problem is the general version of the preceding one. Let [math]P[/math] and [math]Q[/math] be continuous functions of [math]x[/math].

  • Find the general solution [math]y_h[/math] of the homogeneous differential equation [math]\dydx + Py = 0[/math].
  • Show that the general solution of the nonhomogeneous equation [math]\dydx +Py = Q[/math] is equal to the solution [math]y_h[/math] in part (a) plus a particular solution to the nonhomogeneous equation.