guide:A523054c80: Difference between revisions

From Stochiki
No edit summary
 
mNo edit summary
Line 1: Line 1:
==Mack-Method==
 
The '''Mack chain ladder''' method is a statistical method to estimate developmental factors in the chain ladder method. The method assumes the following:
 
*Distinct rows of the array/matrix <math>C_{ij}</math> are independent.
*<math>\operatorname{E}[C_{i,k+1} | C_{i1},\ldots,C_{ik}] = f_k C_{i,k}</math> with <math>f_k</math> a constant.
*<math>\operatorname{Var}[C_{i,k+1} | C_{i1},\ldots,C_{ik}] = \sigma_{k}^2 C_{i,k}</math> with <math>\sigma_k</math> a constant.
 
The goal of the Mack-method is to estimate the ''factors'' <math>f_k</math> using the observable <math>C_{ik}</math>. The estimators, denoted <math>\hat{f}_k</math>, then become selected age-to-age factors. The estimators are defined as follows:
 
<math display="block">
\begin{equation}
\hat{f}_k = \frac{\sum_{j=1}^{I-k}C_{j,k+1}}{\sum_{j=1}^{I-k}C_{j,k}}.
\end{equation}
</math>
 
They have the following desirable properties:
 
*<math>\hat{f_k}</math> is an unbiased estimator for <math>f_k</math>: <math>\operatorname{E}[\hat{f_k}] = f_k</math>.
*The estimator <math>\hat{f_k}</math> is a ''minimum variance estimator'' in the following sense:
 
<math display="block">
 
\hat{f_k} = \underset{X \in S_k}{\operatorname{argmin}} \operatorname{Var}[ X | A_k ],\, S_k = \{\sum_{i=1}^{I-k}w_i C_{i,k+1}/C_{ik} | \sum_{i=1}^{I-k}w_i = 1\}
 
</math>
 
with <math>A_k = \cup_{i=1}^{I-k}\{C_{i1},\ldots,C_{ik}\} </math> the claims ''information'' contained in the first <math>k</math> periods.
 
<div class="text-right">
 
<proofs page="guide_proofs:A523054c80" section="mack-minvar" label="Mack-Method Estimator" />
 
</div>
 
Applying the method to the (reported claims) data in [[guide:75f4dbb8dc|Standard Estimation Techniques]] , we obtain the following selected factors:
 
<table class="table">
<tr><th>12-24</th><th>24-36</th><th>36-48</th><th>48-60</th>
<tr>
<td>1.186</td><td>1.059</td><td>1.027</td><td>1.012</td>
</tr>
</table>

Revision as of 23:20, 22 August 2022

Mack-Method

The Mack chain ladder method is a statistical method to estimate developmental factors in the chain ladder method. The method assumes the following:

  • Distinct rows of the array/matrix [math]C_{ij}[/math] are independent.
  • [math]\operatorname{E}[C_{i,k+1} | C_{i1},\ldots,C_{ik}] = f_k C_{i,k}[/math] with [math]f_k[/math] a constant.
  • [math]\operatorname{Var}[C_{i,k+1} | C_{i1},\ldots,C_{ik}] = \sigma_{k}^2 C_{i,k}[/math] with [math]\sigma_k[/math] a constant.

The goal of the Mack-method is to estimate the factors [math]f_k[/math] using the observable [math]C_{ik}[/math]. The estimators, denoted [math]\hat{f}_k[/math], then become selected age-to-age factors. The estimators are defined as follows:

[[math]] \begin{equation} \hat{f}_k = \frac{\sum_{j=1}^{I-k}C_{j,k+1}}{\sum_{j=1}^{I-k}C_{j,k}}. \end{equation} [[/math]]

They have the following desirable properties:

  • [math]\hat{f_k}[/math] is an unbiased estimator for [math]f_k[/math]: [math]\operatorname{E}[\hat{f_k}] = f_k[/math].
  • The estimator [math]\hat{f_k}[/math] is a minimum variance estimator in the following sense:

[[math]] \hat{f_k} = \underset{X \in S_k}{\operatorname{argmin}} \operatorname{Var}[ X | A_k ],\, S_k = \{\sum_{i=1}^{I-k}w_i C_{i,k+1}/C_{ik} | \sum_{i=1}^{I-k}w_i = 1\} [[/math]]

with [math]A_k = \cup_{i=1}^{I-k}\{C_{i1},\ldots,C_{ik}\} [/math] the claims information contained in the first [math]k[/math] periods.

<proofs page="guide_proofs:A523054c80" section="mack-minvar" label="Mack-Method Estimator" />

Applying the method to the (reported claims) data in Standard Estimation Techniques , we obtain the following selected factors:

12-2424-3636-4848-60
1.1861.0591.0271.012