guide:A523054c80: Difference between revisions
No edit summary |
mNo edit summary |
||
Line 1: | Line 1: | ||
==Mack-Method== | |||
The '''Mack chain ladder''' method is a statistical method to estimate developmental factors in the chain ladder method. The method assumes the following: | |||
*Distinct rows of the array/matrix <math>C_{ij}</math> are independent. | |||
*<math>\operatorname{E}[C_{i,k+1} | C_{i1},\ldots,C_{ik}] = f_k C_{i,k}</math> with <math>f_k</math> a constant. | |||
*<math>\operatorname{Var}[C_{i,k+1} | C_{i1},\ldots,C_{ik}] = \sigma_{k}^2 C_{i,k}</math> with <math>\sigma_k</math> a constant. | |||
The goal of the Mack-method is to estimate the ''factors'' <math>f_k</math> using the observable <math>C_{ik}</math>. The estimators, denoted <math>\hat{f}_k</math>, then become selected age-to-age factors. The estimators are defined as follows: | |||
<math display="block"> | |||
\begin{equation} | |||
\hat{f}_k = \frac{\sum_{j=1}^{I-k}C_{j,k+1}}{\sum_{j=1}^{I-k}C_{j,k}}. | |||
\end{equation} | |||
</math> | |||
They have the following desirable properties: | |||
*<math>\hat{f_k}</math> is an unbiased estimator for <math>f_k</math>: <math>\operatorname{E}[\hat{f_k}] = f_k</math>. | |||
*The estimator <math>\hat{f_k}</math> is a ''minimum variance estimator'' in the following sense: | |||
<math display="block"> | |||
\hat{f_k} = \underset{X \in S_k}{\operatorname{argmin}} \operatorname{Var}[ X | A_k ],\, S_k = \{\sum_{i=1}^{I-k}w_i C_{i,k+1}/C_{ik} | \sum_{i=1}^{I-k}w_i = 1\} | |||
</math> | |||
with <math>A_k = \cup_{i=1}^{I-k}\{C_{i1},\ldots,C_{ik}\} </math> the claims ''information'' contained in the first <math>k</math> periods. | |||
<div class="text-right"> | |||
<proofs page="guide_proofs:A523054c80" section="mack-minvar" label="Mack-Method Estimator" /> | |||
</div> | |||
Applying the method to the (reported claims) data in [[guide:75f4dbb8dc|Standard Estimation Techniques]] , we obtain the following selected factors: | |||
<table class="table"> | |||
<tr><th>12-24</th><th>24-36</th><th>36-48</th><th>48-60</th> | |||
<tr> | |||
<td>1.186</td><td>1.059</td><td>1.027</td><td>1.012</td> | |||
</tr> | |||
</table> |
Revision as of 23:20, 22 August 2022
Mack-Method
The Mack chain ladder method is a statistical method to estimate developmental factors in the chain ladder method. The method assumes the following:
- Distinct rows of the array/matrix [math]C_{ij}[/math] are independent.
- [math]\operatorname{E}[C_{i,k+1} | C_{i1},\ldots,C_{ik}] = f_k C_{i,k}[/math] with [math]f_k[/math] a constant.
- [math]\operatorname{Var}[C_{i,k+1} | C_{i1},\ldots,C_{ik}] = \sigma_{k}^2 C_{i,k}[/math] with [math]\sigma_k[/math] a constant.
The goal of the Mack-method is to estimate the factors [math]f_k[/math] using the observable [math]C_{ik}[/math]. The estimators, denoted [math]\hat{f}_k[/math], then become selected age-to-age factors. The estimators are defined as follows:
They have the following desirable properties:
- [math]\hat{f_k}[/math] is an unbiased estimator for [math]f_k[/math]: [math]\operatorname{E}[\hat{f_k}] = f_k[/math].
- The estimator [math]\hat{f_k}[/math] is a minimum variance estimator in the following sense:
with [math]A_k = \cup_{i=1}^{I-k}\{C_{i1},\ldots,C_{ik}\} [/math] the claims information contained in the first [math]k[/math] periods.
<proofs page="guide_proofs:A523054c80" section="mack-minvar" label="Mack-Method Estimator" />
Applying the method to the (reported claims) data in Standard Estimation Techniques , we obtain the following selected factors:
12-24 | 24-36 | 36-48 | 48-60 |
---|---|---|---|
1.186 | 1.059 | 1.027 | 1.012 |