exercise:D517496346: Difference between revisions

From Stochiki
(Created page with "The waiting time for the first claim from a good driver and the waiting time for the first claim from a bad driver are independent and follow exponential distributions with me...")
 
mNo edit summary
 
Line 6: Line 6:
<li><math>\frac{1}{18}(1 − e^{−2/3} − e^{−1/2} + e^{−7/6} )</math></li>
<li><math>\frac{1}{18}(1 − e^{−2/3} − e^{−1/2} + e^{−7/6} )</math></li>
<li><math>\frac{1}{18} e^{−7/6} </math></li>
<li><math>\frac{1}{18} e^{−7/6} </math></li>
<li><math>\frac{1}{18}(1 − e^{−2/3} − e^{−1/2} + e^{−7/6} )</math></li>
<li><math>1 − e^{−2/3} − e^{−1/2} + e^{−7/6}</math></li>
<li><math>1 − e^{−2/3} − e^{−1/2} + e^{−1/3} </math></li>
<li><math>1 − e^{−2/3} − e^{−1/2} + e^{−1/3} </math></li>
<li><math>1 − \frac{1}{3}e^{−2/3} − \frac{1}{6}e^{−1/2} + \frac{1}{18}e^{−7/6}
<li><math>1 − \frac{1}{3}e^{−2/3} − \frac{1}{6}e^{−1/2} + \frac{1}{18}e^{−7/6}

Latest revision as of 14:24, 2 May 2023

The waiting time for the first claim from a good driver and the waiting time for the first claim from a bad driver are independent and follow exponential distributions with means 6 years and 3 years, respectively.

Calculate the probability that the first claim from a good driver will be filed within 3 years and the first claim from a bad driver will be filed within 2 years.

  • [math]\frac{1}{18}(1 − e^{−2/3} − e^{−1/2} + e^{−7/6} )[/math]
  • [math]\frac{1}{18} e^{−7/6} [/math]
  • [math]1 − e^{−2/3} − e^{−1/2} + e^{−7/6}[/math]
  • [math]1 − e^{−2/3} − e^{−1/2} + e^{−1/3} [/math]
  • [math]1 − \frac{1}{3}e^{−2/3} − \frac{1}{6}e^{−1/2} + \frac{1}{18}e^{−7/6} [/math]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.