excans:0a813e0283: Difference between revisions

From Stochiki
(Created page with "'''Solution: E''' The cumulative distribution function for the exponential distribution of the lifespan is <math display = "block"> F(x) = 1-e^{-\lambda x}, \quad \textrm{f...")
 
mNo edit summary
 
Line 7: Line 7:
</math>
</math>


The probability that the lifespan exceeds 4 years is <math>0.3 = 1 - F(4) = e^{-4\lambda} </math>. Thus <math>\lambda = −(ln 0.3) / 4 </math>. For positive <math>x</math>, the probability density function is  
The probability that the lifespan exceeds 4 years is <math>0.3 = 1 - F(4) = e^{-4\lambda} </math>. Thus <math>\lambda = −(\ln 0.3) / 4 </math>. For positive <math>x</math>, the probability density function is  


<math display = "block">
<math display = "block">

Latest revision as of 19:38, 2 May 2023

Solution: E

The cumulative distribution function for the exponential distribution of the lifespan is

[[math]] F(x) = 1-e^{-\lambda x}, \quad \textrm{for positive }x. [[/math]]

The probability that the lifespan exceeds 4 years is [math]0.3 = 1 - F(4) = e^{-4\lambda} [/math]. Thus [math]\lambda = −(\ln 0.3) / 4 [/math]. For positive [math]x[/math], the probability density function is

[[math]] f(x) = \lambda e^{-\lambda x} = - \frac{\ln(0.3)}{4}e^{(\ln(0.3))x/4} = - \frac{\ln(0.3)}{4}(0.3)^{x/4}. [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.