excans:Fd9e9305f8: Difference between revisions

From Stochiki
(Created page with "'''Solution: E''' Let S be the speed and X be the loss. Given S, X has an exponential distribution with mean 3X. Then, noting that the variance of an exponential random varia...")
 
mNo edit summary
 
Line 5: Line 5:
<math display = "block">
<math display = "block">
\begin{align*}
\begin{align*}
\operatorname{Var}(X) &= \operatorname{Var}[E(X | S) ] + \operatorname{E}[ \operatorname{Var}(X | S) ] \\
\operatorname{Var}(X) &= \operatorname{Var}[\operatorname{E}(X | S) ] + \operatorname{E}[ \operatorname{Var}(X | S) ] \\
&= \operatorname{Var}[3S] + \operatorname{E}[9S^2] \\
&= \operatorname{Var}[3S] + \operatorname{E}[9S^2] \\
&= 9(20-5)^2/12 + 9[(20-5)^2/12 + 12.5^2] \\
&= 9(20-5)^2/12 + 9[(20-5)^2/12 + 12.5^2] \\

Latest revision as of 02:04, 9 May 2023

Solution: E

Let S be the speed and X be the loss. Given S, X has an exponential distribution with mean 3X. Then, noting that the variance of an exponential random variable is the square of the mean, the variance of a uniform random variable is the square of the range divided by 12, and for any random variable the second moment is the variance plus the square of the mean:

[[math]] \begin{align*} \operatorname{Var}(X) &= \operatorname{Var}[\operatorname{E}(X | S) ] + \operatorname{E}[ \operatorname{Var}(X | S) ] \\ &= \operatorname{Var}[3S] + \operatorname{E}[9S^2] \\ &= 9(20-5)^2/12 + 9[(20-5)^2/12 + 12.5^2] \\ &= 1743.75 \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.