excans:37ab604f91: Difference between revisions

From Stochiki
(Created page with "<math display = "block"> \begin{align*} 167.50 &=10a_{\overline{5}|9.2\%}+10(1.092)^{-5}\sum_{t=1}^{c}\left[\frac{(1+k)}{1\cdot092}\right]^{t} \\ 167.50 &=38.6955+6.44001{\frac{(1+k)/1.092}{1-(1+k)/1.092}} \\ (167.50-38.6955)[1-(1+k)/1.092] &= 6.4400](1+k)/1.092 \\ 128.8045 &= 135.24451(1+k)/1.092 \\ 1+k &= 0.0400 \\ k &= 0.0400 \Rightarrow K= 4.0\% \end{align*} </math> {{soacopyright | 2023 }}")
 
mNo edit summary
 
Line 1: Line 1:
'''Solution: A'''
<math display = "block">
<math display = "block">
\begin{align*}
\begin{align*}

Latest revision as of 08:46, 18 November 2023

Solution: A

[[math]] \begin{align*} 167.50 &=10a_{\overline{5}|9.2\%}+10(1.092)^{-5}\sum_{t=1}^{c}\left[\frac{(1+k)}{1\cdot092}\right]^{t} \\ 167.50 &=38.6955+6.44001{\frac{(1+k)/1.092}{1-(1+k)/1.092}} \\ (167.50-38.6955)[1-(1+k)/1.092] &= 6.4400](1+k)/1.092 \\ 128.8045 &= 135.24451(1+k)/1.092 \\ 1+k &= 0.0400 \\ k &= 0.0400 \Rightarrow K= 4.0\% \end{align*} [[/math]]

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.