excans:883721dadf: Difference between revisions

From Stochiki
(Created page with "We want <math>\left(100(1+i)^2-50\right)(1+i)^n=200</math>. Thus <math>(1+i)^n=\frac{200}{\left(100(1+i)^2-50\right)}</math> so <math display="block"> n=\frac{\ln (200)-\ln \left(100(1+i)^2-50\right)}{\ln (1+i)} \text {. } </math> '''References''' {{cite web |url=https://web2.uwindsor.ca/math/hlynka/392oldtests.html |last=Hlynka |first=Myron |website=web2.uwindsor.ca | title = University of Windsor Old Tests 62-392 Theory of Interest | access-date=November 23, 2023}}")
 
mNo edit summary
 
Line 1: Line 1:
'''Solution: B'''
We want <math>\left(100(1+i)^2-50\right)(1+i)^n=200</math>. Thus <math>(1+i)^n=\frac{200}{\left(100(1+i)^2-50\right)}</math> so
We want <math>\left(100(1+i)^2-50\right)(1+i)^n=200</math>. Thus <math>(1+i)^n=\frac{200}{\left(100(1+i)^2-50\right)}</math> so
<math display="block">
<math display="block">


n=\frac{\ln (200)-\ln \left(100(1+i)^2-50\right)}{\ln (1+i)} \text {. }
n=\frac{\ln (200)-\ln \left(100(1+i)^2-50\right)}{\ln (1+i)}.


</math>
</math>

Latest revision as of 13:19, 26 November 2023

Solution: B

We want [math]\left(100(1+i)^2-50\right)(1+i)^n=200[/math]. Thus [math](1+i)^n=\frac{200}{\left(100(1+i)^2-50\right)}[/math] so

[[math]] n=\frac{\ln (200)-\ln \left(100(1+i)^2-50\right)}{\ln (1+i)}. [[/math]]

References

Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.