exercise:864d490c87: Difference between revisions

From Stochiki
(Created page with "For the country of Bienna, you are given: (i) Bienna publishes mortality rates in biennial form, that is, mortality rates are of the form: <math display="block"> { }_{2} q_{2 x}, \text { for } x=0,1,2, \ldots </math> (ii) Deaths are assumed to be uniformly distributed between ages <math>2 x</math> and <math>2 x+2</math>, for <math>x=0,1,2, \ldots</math> (iii) <math>{ }_{2} q_{50}=0.02</math> (iv) <math>{ }_{2} q_{52}=0.04</math> Calculate the probability that (5...")
 
No edit summary
 
Line 19: Line 19:


<ul class="mw-excansopts"><li> 0.02</li><li> 0.03</li><li>0.04</li><li> 0.05</li><li> 0.06</li></ul>
<ul class="mw-excansopts"><li> 0.02</li><li> 0.03</li><li>0.04</li><li> 0.05</li><li> 0.06</li></ul>
{{soacopyright|2024}}

Latest revision as of 01:34, 18 January 2024

For the country of Bienna, you are given:

(i) Bienna publishes mortality rates in biennial form, that is, mortality rates are of the form:

[[math]] { }_{2} q_{2 x}, \text { for } x=0,1,2, \ldots [[/math]]


(ii) Deaths are assumed to be uniformly distributed between ages [math]2 x[/math] and [math]2 x+2[/math], for [math]x=0,1,2, \ldots[/math]

(iii) [math]{ }_{2} q_{50}=0.02[/math]

(iv) [math]{ }_{2} q_{52}=0.04[/math]

Calculate the probability that (50) dies during the next 2.5 years.

  • 0.02
  • 0.03
  • 0.04
  • 0.05
  • 0.06

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.