exercise:7c66321da5: Difference between revisions
From Stochiki
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
<ul class="mw-excansopts"><li> 1500</li><li> 1505</li><li> 1510</li><li> 1515</li><li> 1520</li></ul> | <ul class="mw-excansopts"><li> 1500</li><li> 1505</li><li> 1510</li><li> 1515</li><li> 1520</li></ul> | ||
{{soacopyright|2024}} |
Latest revision as of 01:34, 18 January 2024
A club is established with 2000 members, 1000 of exact age 35 and 1000 of exact age 45 . You are given:
(i) Mortality follows the Standard Ultimate Life Table
(ii) Future lifetimes are independent
(iii) [math] N[/math] is the random variable for the number of members still alive 40 years after the club is established
Using the normal approximation, without the continuity correction, calculate the smallest [math]n[/math] such that [math]\operatorname{Pr}(N \geq n) \leq 0.05[/math].
- 1500
- 1505
- 1510
- 1515
- 1520