excans:5df74bcf35: Difference between revisions
(Created page with "'''Answer: B''' Let <math>S</math> denote the number of survivors. This is a binomial random variable with <math>n=4000</math> and success probability <math>\frac{21,178.3}{99,871.1}=0.21206</math> <math>E(S)=4,000(0.21206)=848.24</math> The variance is <math>\operatorname{Var}(S)=(0.21206)(1-0.21206)(4,000)=668.36</math> <math>\operatorname{Std} \operatorname{Dev}(S)=\sqrt{668.36}=25.853</math> The <math>90 \%</math> percentile of the standard normal is 1.282 Let...") |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 36: | Line 36: | ||
So <math>s=815</math> is the largest integer that works. | So <math>s=815</math> is the largest integer that works. | ||
{{soacopyright|2024}} | |||
{{soacopyright|2024}} | |||
{{soacopyright|2024}} |
Latest revision as of 02:34, 18 January 2024
Answer: B
Let [math]S[/math] denote the number of survivors.
This is a binomial random variable with [math]n=4000[/math] and success probability [math]\frac{21,178.3}{99,871.1}=0.21206[/math]
[math]E(S)=4,000(0.21206)=848.24[/math]
The variance is [math]\operatorname{Var}(S)=(0.21206)(1-0.21206)(4,000)=668.36[/math]
[math]\operatorname{Std} \operatorname{Dev}(S)=\sqrt{668.36}=25.853[/math]
The [math]90 \%[/math] percentile of the standard normal is 1.282
Let [math]S^{*}[/math] denote the normal distribution with mean 848.24 and standard deviation 25.853. Since [math]S[/math] is discrete and integer-valued, for any integer [math]s[/math],
For this probability to be at least [math]90 \%[/math], we must have [math]\frac{s-0.5-848.24}{25.853}\lt-1.282[/math]
So [math]s=815[/math] is the largest integer that works.