excans:20488cb6ea: Difference between revisions

From Stochiki
(Created page with "'''Answer: A''' <math>{ }_{10} p_{x}=\frac{l_{x+10}}{l_{x}}=e^{-\int_{0}^{10} \mu_{x+1} \cdot d t}=>\frac{400}{1000}=e^{-\int_{0}^{10} \beta t^{2} \cdot d t}=>0.4=e^{-\beta t^{3} / 3 b^{10}}</math> <math>==>0.4=e^{-\beta \cdot 100^{3} / 3}==>\ln (0.4)=-\beta\left(\frac{1000}{3}\right)==>\beta=-\ln (0.4)(.003)=0.0027489</math>")
 
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 4: Line 4:


<math>==>0.4=e^{-\beta \cdot 100^{3} / 3}==>\ln (0.4)=-\beta\left(\frac{1000}{3}\right)==>\beta=-\ln (0.4)(.003)=0.0027489</math>
<math>==>0.4=e^{-\beta \cdot 100^{3} / 3}==>\ln (0.4)=-\beta\left(\frac{1000}{3}\right)==>\beta=-\ln (0.4)(.003)=0.0027489</math>
{{soacopyright|2024}}
{{soacopyright|2024}}
{{soacopyright|2024}}

Latest revision as of 02:34, 18 January 2024

Answer: A

[math]{ }_{10} p_{x}=\frac{l_{x+10}}{l_{x}}=e^{-\int_{0}^{10} \mu_{x+1} \cdot d t}=\gt\frac{400}{1000}=e^{-\int_{0}^{10} \beta t^{2} \cdot d t}=\gt0.4=e^{-\beta t^{3} / 3 b^{10}}[/math]

[math]==\gt0.4=e^{-\beta \cdot 100^{3} / 3}==\gt\ln (0.4)=-\beta\left(\frac{1000}{3}\right)==\gt\beta=-\ln (0.4)(.003)=0.0027489[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.