excans:20488cb6ea: Difference between revisions

From Stochiki
No edit summary
No edit summary
 
Line 4: Line 4:


<math>==>0.4=e^{-\beta \cdot 100^{3} / 3}==>\ln (0.4)=-\beta\left(\frac{1000}{3}\right)==>\beta=-\ln (0.4)(.003)=0.0027489</math>
<math>==>0.4=e^{-\beta \cdot 100^{3} / 3}==>\ln (0.4)=-\beta\left(\frac{1000}{3}\right)==>\beta=-\ln (0.4)(.003)=0.0027489</math>
{{soacopyright|2024}}


{{soacopyright|2024}}
{{soacopyright|2024}}


{{soacopyright|2024}}
{{soacopyright|2024}}

Latest revision as of 02:34, 18 January 2024

Answer: A

[math]{ }_{10} p_{x}=\frac{l_{x+10}}{l_{x}}=e^{-\int_{0}^{10} \mu_{x+1} \cdot d t}=\gt\frac{400}{1000}=e^{-\int_{0}^{10} \beta t^{2} \cdot d t}=\gt0.4=e^{-\beta t^{3} / 3 b^{10}}[/math]

[math]==\gt0.4=e^{-\beta \cdot 100^{3} / 3}==\gt\ln (0.4)=-\beta\left(\frac{1000}{3}\right)==\gt\beta=-\ln (0.4)(.003)=0.0027489[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.