exercise:261509e67f: Difference between revisions
From Stochiki
No edit summary |
No edit summary |
||
Line 11: | Line 11: | ||
Calculate <math>\operatorname{Var}(Z)</math>. | Calculate <math>\operatorname{Var}(Z)</math>. | ||
<ul class="mw-excansopts"><li> 0. | <ul class="mw-excansopts"><li> 0.300</li><li>0.325 </li><li> 0.350</li><li> 0.375</li><li> 0.400</li></ul> | ||
{{soacopyright|2024}} | {{soacopyright|2024}} |
Latest revision as of 12:47, 18 January 2024
For a special fully continuous whole life insurance on [math](x)[/math], you are given:
i) [math] \mu_{x+t}=0.03, t \geq 0[/math]
ii) [math]\delta=0.06[/math]
iii) The death benefit at time [math]t[/math] is [math]b_{t}=e^{0.05 t}, t \geq 0[/math]
iv) [math]Z[/math] is the present value random variable at issue for this insurance
Calculate [math]\operatorname{Var}(Z)[/math].
- 0.300
- 0.325
- 0.350
- 0.375
- 0.400