exercise:5541528963: Difference between revisions

From Stochiki
(Created page with "The joint density function of the ''logarithm'' of the two random variables <math>X</math> and <math>Y</math> equals <math>f(x,y)</math>. Which of the following expressions re...")
 
No edit summary
Line 1: Line 1:
The joint density function of the ''logarithm'' of the two random variables <math>X</math> and <math>Y</math> equals <math>f(x,y)</math>. Which of the following expressions represent the joint density function of <math>X</math> and <math>Y</math>?
The joint density function of the ''logarithm'' of the two random variables <math>X</math> and <math>Y</math> equals <math>f(x,y)</math>. Which of the following expressions represent the joint density function of <math>X</math> and <math>Y</math>?


<ol style="list-style-type:upper-alpha">
<ul class="mw-excansopts">
<li><math>y^{-1}x^{-1}f(\ln(x),\ln(y))</math></li>
<li><math>y^{-1}x^{-1}f(\ln(x),\ln(y))</math></li>
<li><math>f(\ln(x),\ln(y))</math></li>
<li><math>f(\ln(x),\ln(y))</math></li>
Line 7: Line 7:
<li><math>e^x e^yf(e^x,e^y)</math></li>
<li><math>e^x e^yf(e^x,e^y)</math></li>
<li><math>x^{-1}f(\ln(x),x) + y^{-1}f(x,\ln(y))</math></li>
<li><math>x^{-1}f(\ln(x),x) + y^{-1}f(x,\ln(y))</math></li>
</ol>
</ul>

Revision as of 21:11, 17 March 2024

The joint density function of the logarithm of the two random variables [math]X[/math] and [math]Y[/math] equals [math]f(x,y)[/math]. Which of the following expressions represent the joint density function of [math]X[/math] and [math]Y[/math]?

  • [math]y^{-1}x^{-1}f(\ln(x),\ln(y))[/math]
  • [math]f(\ln(x),\ln(y))[/math]
  • [math]y^{-1}x^{-1}f(x,y)[/math]
  • [math]e^x e^yf(e^x,e^y)[/math]
  • [math]x^{-1}f(\ln(x),x) + y^{-1}f(x,\ln(y))[/math]