guide:4a4c329fd1: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<div class="d-none"><math> | |||
\newcommand{\R}{\mathbb{R}} | |||
\newcommand{\A}{\mathcal{A}} | |||
\newcommand{\B}{\mathcal{B}} | |||
\newcommand{\N}{\mathbb{N}} | |||
\newcommand{\C}{\mathbb{C}} | |||
\newcommand{\Rbar}{\overline{\mathbb{R}}} | |||
\newcommand{\Bbar}{\overline{\mathcal{B}}} | |||
\newcommand{\Q}{\mathbb{Q}} | |||
\newcommand{\E}{\mathbb{E}} | |||
\newcommand{\p}{\mathbb{P}} | |||
\newcommand{\one}{\mathds{1}} | |||
\newcommand{\0}{\mathcal{O}} | |||
\newcommand{\mat}{\textnormal{Mat}} | |||
\newcommand{\sign}{\textnormal{sign}} | |||
\newcommand{\CP}{\mathcal{P}} | |||
\newcommand{\CT}{\mathcal{T}} | |||
\newcommand{\CY}{\mathcal{Y}} | |||
\newcommand{\F}{\mathcal{F}} | |||
\newcommand{\mathds}{\mathbb}</math></div> | |||
{{alert-info | | |||
Before stating the Radon-Nikodym theorem, we recall some definitions from measure theory. Let <math>(\Omega,\B)</math> be a measurable space. A measure <math>\nu</math> is <math>absolutely</math> <math>continuous</math> with respect to another measure <math>\mu</math>, written <math>\nu\ll\mu</math> if there exists some measurable <math>f\geq 0</math> with <math>d\nu=fd\mu</math>, that is if there is a finite measurable <math>f\geq 0</math> with | |||
<math display="block"> | |||
\nu(B)=\int_B fd\mu | |||
</math> | |||
for all <math>B\in\B</math>. Two measures <math>\mu</math> and <math>\nu</math> are <math>singular</math> with respect to each other if there exists disjoint measurable sets <math>A_1,A_2\subset \Omega</math> with <math>\Omega=A_1\sqcup A_2</math> and with <math>\nu(A_1)=0=\mu(A_2)</math>. Finally, recall that a measure <math>\mu</math> is <math>\sigma</math>-finite if there is a decomposition of <math>\Omega</math> into measurable sets, | |||
<math display="block"> | |||
\Omega=\bigsqcup_{i=1}^\infty A_i | |||
</math> | |||
with <math>\mu(A_i) < \infty</math>. | |||
}} | |||
{{proofcard|Theorem (Radon-Nikodym)|RN|Let <math>\mu</math> and <math>\nu</math> be two <math>\sigma</math>-finite measures on a measurable space <math>(\Omega,\B)</math>. Then <math>\nu</math> can be decomposed as | |||
<math display="block"> | |||
\nu=\nu_{abs}+\nu_{sing} | |||
</math> | |||
into the sum of two <math>\sigma</math>-finite measure with <math>\nu_{abs}\ll\mu</math> being absolutely continuous with respect to <math>\mu</math>, and with <math>\nu_{sing}</math> and <math>\mu</math> being singular to each other (which will be written <math>\nu_{sing}\perp\mu</math>).|}} | |||
{{alert-info | | |||
The theorem implies that there exists another, more practical way of checking whether a given <math>\sigma</math>-finite measure <math>\nu</math> is absolutely continuous with respect to another <math>\sigma</math>-finite measure <math>\mu</math>. If <math>\mu(N)=0</math> implies that <math>\nu(N)=0</math> for every measurable <math>N\subset \Omega</math>, then <math>\nu=\nu_{abs}</math> is absolutely continuous. We also note that the density function <math>f</math> with <math>fd\mu=d\nu</math> is called the <math>Radon</math>-<math>Nikodym</math> <math>derivative</math> and is often written <math>f=\frac{d\nu}{d\mu}</math>. | |||
}} | |||
{{alert-info | | |||
To prove this theorem, we need a theorem which gives us a nice relationship between a Hilbert space and its dual space. Actually we can identify a Hilbert space <math>\mathcal{H}</math> with its dual space <math>\mathcal{H}^*</math>. | |||
}} | |||
{{proofcard|Lemma (Riesz-representation for Hilbert spaces)|lem-1|For a Hilbert space <math>\mathcal{H}</math>, the map sending <math>h\in \mathcal{H}</math> to <math>\phi(h)\in\mathcal{H}^*</math> defined by | |||
<math display="block"> | |||
\phi(h)(x)=\langle x,h\rangle | |||
</math> | |||
is a linear (resp. sesqui-linear in the complex case) isometric isomorphism between <math>\mathcal{H}</math> and its dual space <math>\mathcal{H}^*</math>. | |||
|[Proof of [[#RN |Theorem]]] | |||
Suppose that <math>\mu</math> and <math>\nu</math> are both finite measures (the general case can be reduced to this case by using the assumption that <math>\mu</math> and <math>\nu</math> are both <math>\sigma</math>-finite). We define a new measure <math>m=\mu+\nu</math> and will work with the real Hilbert space <math>\mathcal{H}=L^2(\Omega,m)</math>. On this Hilbert space we define a linear functional <math>\phi</math> by | |||
<math display="block"> | |||
\phi(g)=\int gd\nu | |||
</math> | |||
for <math>g\in\mathcal{H}</math>. For <math>g</math> a simple function on <math>\Omega</math>, this is clearly well-defined and satisfies | |||
<math display="block"> | |||
\vert\phi(g)\vert=\left\vert\int gd\nu\right\vert\leq \int \vert g\vert d\nu\leq \int \vert g\vert dm\leq \| g\|_{\mathcal{H}}\|\one\|_{\mathcal{H}} | |||
</math> | |||
where we have used the fact that <math>m=\mu+\nu</math>, that <math>\mu</math> is a positive measure and the Cauchy-Schwartz inequality on <math>\mathcal{H}</math>. Since the simple functions are dense in <math>\mathcal{H}</math>, the functional extends to a functional on all of <math>\mathcal{H}</math>. By the Riesz-representation for Hilbert spaces there is some <math>k\in\mathcal{H}</math> such that | |||
<math display="block"> | |||
\begin{equation} | |||
\int gd\nu=\phi(g)=\int gkdm. | |||
\end{equation} | |||
</math> | |||
We claim that <math>k</math> takes values in <math>[0,1]</math> almost surely with respect to <math>m</math>. Indeed, for any <math>B\in\B</math> we have | |||
<math display="block"> | |||
0\leq \nu(B)\leq m(B), | |||
</math> | |||
so (using <math>g=\one_B</math>), | |||
<math display="block"> | |||
0\leq \int_B kdm\leq m(B). | |||
</math> | |||
Using the choices | |||
<math display="block"> | |||
B=\{\omega\in\Omega\mid k(\omega) < 0\} | |||
</math> | |||
and | |||
<math display="block"> | |||
B=\{\omega\in\Omega\mid k(\omega) > 1\} | |||
</math> | |||
implies the claim that <math>k</math> takes <math>m</math>-almost surely values in <math>[0,1]</math>. Since <math>m=\mu+\nu</math>, we can reformulate (7) as | |||
<math display="block"> | |||
\begin{equation} | |||
\int g(1-k)d\nu=\int gkd\mu. | |||
\end{equation} | |||
</math> | |||
This holds by construction for all simple functions <math>g</math>, and hence for all nonnegative measurable functions by monotone convergence. Now define <math>\nu_{sing}</math> to be <math>\nu\mid_{A}</math>, where | |||
<math display="block"> | |||
A=\{\omega\in\Omega\mid k(\omega)=1\}. | |||
</math> | |||
By definition, <math>\nu_{sing}(\Omega\setminus A)=0</math> and by (8) applied with <math>g=\one_{A}</math> we also have <math>\mu(A)=0</math>. Therefore | |||
<math display="block"> | |||
\nu_{sing}\perp\mu. | |||
</math> | |||
We also define | |||
<math display="block"> | |||
\nu_{abs}=\nu\mid_{\Omega\setminus A}=\nu_{\{\omega\in\Omega\mid k(\omega) < 1\}} | |||
</math> | |||
so that <math>\nu=\nu_{sing}+\nu_{abs}</math>. Define the function <math>f=\frac{k}{1-k}\geq 0</math> on <math>\Omega\setminus A</math> and let <math>g\geq 0</math> be measurable. Then by (8) we have | |||
<math display="block"> | |||
\int_{\Omega\setminus A}gf d\mu=\int_{\Omega\setminus A}\frac{g}{1-k}kd\mu=\int_{\Omega\setminus A}\frac{g}{1-k}(1-k)d\nu=\int_{\Omega\setminus A}gd\nu_{abs}, | |||
</math> | |||
which shows that <math>d\nu_{abs}=fd\mu</math> and so <math>\nu_{abs}\ll \mu</math>.}} | |||
{{proofcard|Theorem|thm-1|Let <math>(\Omega,\F,\p)</math> be a probability space. Let <math>\mathcal{G}\subset \F</math> be a sub <math>\sigma</math>-Algebra of <math>\F</math> and let <math>X\in L^1(\Omega,\F,\p)</math> be a r.v. Then there exists a unique r.v. in <math>L^1(\Omega,\mathcal{G},\p)</math>, denoted by <math>\E[X\mid\mathcal{G}]</math>, such that for all <math>B\in\mathcal{G}</math> | |||
<math display="block"> | |||
\E[X\one_B]=\E[\E[X\mid\mathcal{G}]\one_B]. | |||
</math> | |||
More generally, for every bounded and <math>\mathcal{G}</math>-measurable r.v. <math>Z</math> we get | |||
<math display="block"> | |||
\E[XZ]=\E[\E[X\mid\mathcal{G}]Z] | |||
</math> | |||
and if <math>X\geq 0</math>, then <math>\E[X\mid\mathcal{G}]\geq 0</math>. | |||
|The uniqueness part was already done. To show existence, assume first that <math>X</math> is positive. Define a new measure <math>\Q</math> on <math>(\Omega,\mathcal{G})</math> by | |||
<math display="block"> | |||
\Q[A]=\E[X\one_A]=\int_A X(\omega)d\p(\omega) | |||
</math> | |||
for all <math>A\in\mathcal{G}</math>. Now consider the measure <math>\p</math> restricted to <math>\mathcal{G}</math>. Then we get that | |||
<math display="block"> | |||
\Q\ll\p | |||
</math> | |||
on <math>\mathcal{G}</math>. The Radon-Nikodym theorem implies that there exists a positive and <math>\mathcal{G}</math>-measurable r.v. <math>\tilde X</math> such that | |||
<math display="block"> | |||
\Q[A]=\E[\tilde X\one_A] | |||
</math> | |||
for all <math>A\in\mathcal{G}</math>. For <math>A\in\mathcal{G}</math> we get that | |||
<math display="block"> | |||
\E[X\one_A]=\E[\tilde X\one_A]. | |||
</math> | |||
Now taking <math>A=\Omega</math>, we get that <math>\E[X]=\E[\tilde X]</math>. Therefore we have that <math>\tilde X\in L^1(\Omega,\mathcal{G},\p)</math> and hence we see that <math>\tilde X=\E[X\mid\mathcal{G}]</math> For the general case, we can just write <math>X=X^++X^-</math> and do the same as before.}} | |||
==General references== | |||
{{cite arXiv|last=Moshayedi|first=Nima|year=2020|title=Lectures on Probability Theory|eprint=2010.16280|class=math.PR}} |
Latest revision as of 00:53, 8 May 2024
Before stating the Radon-Nikodym theorem, we recall some definitions from measure theory. Let [math](\Omega,\B)[/math] be a measurable space. A measure [math]\nu[/math] is [math]absolutely[/math] [math]continuous[/math] with respect to another measure [math]\mu[/math], written [math]\nu\ll\mu[/math] if there exists some measurable [math]f\geq 0[/math] with [math]d\nu=fd\mu[/math], that is if there is a finite measurable [math]f\geq 0[/math] with
Let [math]\mu[/math] and [math]\nu[/math] be two [math]\sigma[/math]-finite measures on a measurable space [math](\Omega,\B)[/math]. Then [math]\nu[/math] can be decomposed as
The theorem implies that there exists another, more practical way of checking whether a given [math]\sigma[/math]-finite measure [math]\nu[/math] is absolutely continuous with respect to another [math]\sigma[/math]-finite measure [math]\mu[/math]. If [math]\mu(N)=0[/math] implies that [math]\nu(N)=0[/math] for every measurable [math]N\subset \Omega[/math], then [math]\nu=\nu_{abs}[/math] is absolutely continuous. We also note that the density function [math]f[/math] with [math]fd\mu=d\nu[/math] is called the [math]Radon[/math]-[math]Nikodym[/math] [math]derivative[/math] and is often written [math]f=\frac{d\nu}{d\mu}[/math].
To prove this theorem, we need a theorem which gives us a nice relationship between a Hilbert space and its dual space. Actually we can identify a Hilbert space [math]\mathcal{H}[/math] with its dual space [math]\mathcal{H}^*[/math].
For a Hilbert space [math]\mathcal{H}[/math], the map sending [math]h\in \mathcal{H}[/math] to [math]\phi(h)\in\mathcal{H}^*[/math] defined by
[Proof of Theorem] Suppose that [math]\mu[/math] and [math]\nu[/math] are both finite measures (the general case can be reduced to this case by using the assumption that [math]\mu[/math] and [math]\nu[/math] are both [math]\sigma[/math]-finite). We define a new measure [math]m=\mu+\nu[/math] and will work with the real Hilbert space [math]\mathcal{H}=L^2(\Omega,m)[/math]. On this Hilbert space we define a linear functional [math]\phi[/math] by
We claim that [math]k[/math] takes values in [math][0,1][/math] almost surely with respect to [math]m[/math]. Indeed, for any [math]B\in\B[/math] we have
This holds by construction for all simple functions [math]g[/math], and hence for all nonnegative measurable functions by monotone convergence. Now define [math]\nu_{sing}[/math] to be [math]\nu\mid_{A}[/math], where
Let [math](\Omega,\F,\p)[/math] be a probability space. Let [math]\mathcal{G}\subset \F[/math] be a sub [math]\sigma[/math]-Algebra of [math]\F[/math] and let [math]X\in L^1(\Omega,\F,\p)[/math] be a r.v. Then there exists a unique r.v. in [math]L^1(\Omega,\mathcal{G},\p)[/math], denoted by [math]\E[X\mid\mathcal{G}][/math], such that for all [math]B\in\mathcal{G}[/math]
The uniqueness part was already done. To show existence, assume first that [math]X[/math] is positive. Define a new measure [math]\Q[/math] on [math](\Omega,\mathcal{G})[/math] by
General references
Moshayedi, Nima (2020). "Lectures on Probability Theory". arXiv:2010.16280 [math.PR].