guide:49ad1c72ef: Difference between revisions

From Stochiki
No edit summary
 
No edit summary
Line 1: Line 1:
<div class="d-none"><math>
\newcommand{\R}{\mathbb{R}}
\newcommand{\A}{\mathcal{A}}
\newcommand{\B}{\mathcal{B}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\Rbar}{\overline{\mathbb{R}}}
\newcommand{\Bbar}{\overline{\mathcal{B}}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\E}{\mathbb{E}}
\newcommand{\p}{\mathbb{P}}
\newcommand{\one}{\mathds{1}}
\newcommand{\0}{\mathcal{O}}
\newcommand{\mat}{\textnormal{Mat}}
\newcommand{\sign}{\textnormal{sign}}
\newcommand{\CP}{\mathcal{P}}
\newcommand{\CT}{\mathcal{T}}
\newcommand{\CY}{\mathcal{Y}}
\newcommand{\F}{\mathcal{F}}
\newcommand{\mathds}{\mathbb}</math></div>
{{definitioncard|Invariant measure|
Let <math>\mu</math> be a positive measure on <math>E</math> such that <math>\mu(x) < \infty</math> for all <math>x\in E</math> and <math>\mu\not\equiv 0</math>. We say that <math>\mu</math> is invariant for the transition matrix <math>Q</math> if for all <math>y\in E</math> we get


<math display="block">
\mu(y)=\sum_{x\in E}\mu(x)Q(x,y).
</math>
With matrix notation, this means
<math display="block">
\mu Q=\mu.
</math>
Since for all <math>n\in\N</math>, <math>Q_n=Q^n</math>, we have <math>\mu Q_n\mu=\mu</math>.
}}
===Interpretation===
Assume that <math>\mu(E) < \infty</math>, which is always the case when <math>E</math> is finite. We can assume that <math>\mu(E)=1</math>. Then for all measurable maps <math>f:E\to\R_+</math>, we get that
<math display="block">
\E_\mu[f(X_1)]=\sum_{x\in E}\mu(x)\sum_{y\in E}Q(x,y)f(y)=\sum_{y\in E}f(y)\sum_{x\in E}\mu(x)Q(x,y)=\sum_{y\in E}\mu(y)f(y).
</math>
Hence under <math>\p_\mu</math>, we get that <math>X_1</math> <math>{law}\atop{=}</math> <math>X_0\sim \mu</math>. Using the fact that <math>\mu Q_n=\mu</math>, we show that under <math>\p_\mu</math>, we get that <math>X_n\sim \mu</math>. For all measurable maps <math>F:\Omega\to\R_+</math> we have
<math display="block">
\E_\mu[F\circ \Theta_\one]=\E_\mu[\E_{X_1}[F]]=\sum_{x\in E}\mu(x)\E_x[F]=\E_\mu[F],
</math>
which implies that under <math>\p_\mu</math>, we get that <math>(X_{1+n})_{n\geq 0}</math> has the same law{{efn|Same holds for <math>(X_{k+n})_{n\geq 0}</math> for all <math>k\geq 0</math>}} as <math>(X_n)_{n\geq 0}</math>.
'''Example'''
For the r.v. on <math>\mathbb{Z}^d</math>, we get <math>Q(x,y)=(y,x)</math>. One then immediately checks that the counting measure on <math>\mathbb{Z}^d</math> is invariant.
{{definitioncard|Reversible measure|
Let <math>\mu</math> be  positive measure on <math>E</math> such that <math>\mu(x) < \infty</math> for all <math>x\in E</math>. <math>\mu</math> is said to be reversible if for all <math>x,y\in E</math> we get that
<math display="block">
\mu(x)Q(x,y)=\mu(y)Q(y,x).
</math>
}}
{{proofcard|Proposition|prop-1|A reversible measure is invariant.
|If <math>\mu</math> is reversible, we get that
<math display="block">
\sum_{x\in E}\mu(x)Q(x,y)=\sum_{x\in E}\mu(y)Q(y,x)=\mu(y).
</math>}}
{{alert-info |
There exists invariant measures which are not reversible, for example the counting measure is not reversible if the <math>\mathcal{G}</math> is not symmetric, i.e. <math>\mathcal{G}(x)=\mathcal{G}(-x)</math>. 
}}
'''Example'''
[Random walk on a graph]
The measure <math>\mu(x)=\vert A_x\vert</math> is reversible. Indeed, if <math>\{x,y\}\in A</math>, we get
<math display="block">
\mu(x)Q(x,y)=\vert A_x\vert\frac{1}{\vert A_x\vert}=1=\mu(y)Q(y,x).
</math>
'''Example'''
[Ehrenfest's model]
This is the Markov chain on <math>\{1,...,k\}</math> with transition matrix
<math display="block">
\begin{cases}Q(j,j+1)=\frac{k-j}{k},& 0\leq  j\leq  k-1\\ Q(j,j-1)=\frac{j}{k},&1\leq  j\leq  k\end{cases}
</math>
A measure <math>\mu</math> is reversible if and only if for <math>0\leq  j\leq  k-1</math> we have
<math display="block">
\mu(j)\frac{k-j}{k}=\mu(j+1)\frac{j+1}{k}.
</math>
One can check that <math>\mu(j)=\binom{k}{j}</math> is a solution.
{{proofcard|Theorem|thm-1|Let <math>x\in E</math> be recurrent. The formula
<math display="block">
\mu(y)=\E_x\left[\sum_{k=0}^{H_x-1}\one_{\{ X_k=y\}}\right]
</math>
defines an invariant measure. Moreover, <math>\mu(y) > 0</math> if and only if <math>y</math> is in the same recurrence class as <math>x</math>.
|Let us first note that if <math>y</math> is not in the same recurrence class as <math>x</math>, then
<math display="block">
\E_x[N_y]=U(x,y)=0,
</math>
which implies that <math>\mu(y)=0</math>. For <math>y\in E</math>, we get that
<math display="block">
\begin{multline*}
\mu(y)=\E_x\left[\sum_{k=1}^{H_x}\one_{\{ X_k=y\}}\right]=\sum_{z\in E}\E_x\left[\sum_{k=1}^{H_x}\one_{\{ X_{k-1}=z,X_k=y\}}\right]=\sum_{z\in E}\sum_{k\geq 1}\E_x\left[\one_{\{k\leq  H_x,X_{k-1}=z\}}\one_{\{ X_k=y\}}\right]\\=\sum_{z\in E}\sum_{k\geq 1}\E_x\left[\one_{\{k\leq  H_x,X_{k-1}=z\}}\right]=\sum_{z\in E}\E_x\left[\sum_{k=1}^{H_x}\one_{X_{k-1}=z}\right]Q(z,y)=\sum_{z\in E}\mu(z)Q(z,y).
\end{multline*}
</math>
We showed that <math>\mu Q=\mu</math>. Thus, it follows that <math>\mu Q_n=\mu</math> for all <math>n\geq 0</math>. In particular, we get
<math display="block">
\mu(x)=1=\sum_{z\in E}\mu(z)Q_n(z,x).
</math>
Let <math>y</math> be in the same recurrence class as <math>x</math>. Then there exists some <math>n\geq 0</math> such that <math>Q_n(y,x) > 0</math>, which implies that
<math display="block">
\mu(y) < \infty.
</math>
We can also find <math>m\geq 0</math> such that <math>Q_m(x,y) > 0</math> and
<math display="block">
\mu(y)=\sum_{z\in E}\mu(z)Q_m(z,y)\geq Q_m(x,x) > 0.
</math>}}
{{alert-info |
If there exists several recurrence classes <math>R_i</math> with <math>i\in I</math> for some index set <math>I</math> and if we set
<math display="block">
\mu_i(y)=\E_{x_i}\left[\sum_{k=0}^{H_{x_i}-1}\one_{\{ X_k=y\}}\right],
</math>
we obtain a invariant measure with disjoint supports.
}}
{{proofcard|Theorem|thm-2|Let us assume that the Markov chain is irreducible and recurrent. Then the invariant measure is unique up to a multiplicative constant.
|Let <math>\mu</math> be an invariant measure. We can show by induction that for <math>p\geq 0</math> and for all <math>x,y\in E</math>, we get
<math display="block">
\mu(y)\geq \mu(x)\E_x\left[\sum_{k=0}^{p\land (H_x-1)}\one_{\{ X_k=y\}}\right].(\star)
</math>
First, if <math>x=y</math>, this is obvious. Let us thus suppose that <math>x\not=y</math>. If <math>p=0</math>, the inequality is immediate. Let us assume <math>(\star)</math> holds for <math>p</math>. Then
<math display="block">
\begin{align*}
\mu(y)&=\sum_{z\in E}\mu(z)Q(z,y)\geq \mu(x)\sum_{z\in E}\E_x\left[\sum_{k=0}^{p\land (H_x-1)}\one_{\{ X_k=z\}}\right]Q(z,y)\\
&=\mu(x)\sum_{z\in E}\sum_{k=0}^p\E_x[\one_{\{ X_k=z,k\leq  H_x-1\}}]Q(z,y)\\
&=\mu(x)\sum_{z\in E}\sum_{k=0}^p
\E_x[\one_{\{ X_k=z,k\leq  H_x-1\}}]\one_{\{ X_{k-1}=y\}}\\
&=\mu(x)\E_x\left[\sum_{k=0}^{p\land (H_x-1)}\one_{\{ X_{k-1}=y\}}\right]=\mu(x)\E_x\left[\sum_{k=1}^{(p+1)\land (H_x)}\one_{\{ X_k=y\}}\right].
\end{align*}
</math>
This establishes the result for <math>p+1</math>. Now, if we let <math>p\to\infty</math> in <math>(\star)</math>, we get
<math display="block">
\mu(y)\geq \mu(x)\E_x\left[\sum_{k=0}^{H_x-1}\one_{\{X_k=y\}}\right].
</math>
Let us fix <math>x\in E</math>. The measure <math>\nu_x(y)=\E_x\left[\sum_{k=0}^{H_x-1}\one_{\{ X_k=y\}}\right]</math> is invariant and we have <math>\mu(y)\geq \mu(x)\nu_x(y)</math>. Hence for all <math>n\geq 1</math> we get
<math display="block">
\mu(x)=\sum_{z\in E}\mu(z)Q_n(z,x)\geq \sum_{x\in E}\mu(x)\nu_x(z)Q_n(z,x)=\mu(x)\nu_x(x)=\mu(x).
</math>
Therefore we get that <math>\mu(z)=\mu(x)=\nu_x(z)</math> for all <math>z</math> such that <math>Q_n(z,x) > 0</math>. Since the chain is irreducible, there exists some <math>n\geq 0</math> such that <math>Q_n(z,x) > 0</math>. This implies finally that
<math display="block">
\mu(z)=\mu(x)\nu_x(z).
</math>}}
{{proofcard|Corollary|cor2|Let us assume the chain is irreducible and recurrent. Then one of the following hold.
<ul style{{=}}"list-style-type:lower-roman"><li>There exists an invariant probability measure <math>\mu</math> and for <math>x\in E</math> we have
<math display="block">
\E_x[H_x]=\frac{1}{\mu(x)}.
</math>
</li>
<li>
All invariant measures have infinite total mass and for <math>x\in E</math> we get
<math display="block">
\E_x[H_x]=\infty.
</math>
</li>
</ul>
In the first case, the basis is said to be positive recurrent and in the second case it is said to be negative recurrent.
{{alert-info |
If <math>E</math> is finite, then only the first case can occur.
}}
|[Proof of [[#cor2 |Corollary]]]
We know that in this situation all invariant measures are proportional. Hence they all have finite mass or infinite mass. For case <math>(i)</math>, let <math>\mu</math> be the invariant probability measure and let <math>x\in E</math>. Moreover, let
<math display="block">
\nu_x(y)=\E_x\left[\sum_{k=0}^{H_x-1}\one_{\{ X_k=y\}}\right].
</math>
Then for some <math>C > 0</math> we get <math>\mu=C\nu</math>. We can determine <math>C</math> by
<math display="block">
1=\mu(E)=C\nu_x(E),
</math>
which implies that <math>C=\frac{1}{\nu_x(E)}</math> and thus
<math display="block">
\mu(x)=\frac{\nu_x(x)}{\nu_x(E)}=\frac{1}{\nu_x(E)}.
</math>
But on the other hand we have
<math display="block">
\nu_x(E)=\sum_{y\in E}\E_x\left[\sum_{k=0}^{H_x-1}\one_{\{ X_k=y\}}\right]=\E_x\left[\sum_{k=0}^{H_x-1}\left(\sum_{y\in E}\one_{\{ X_k=y\}}\right)\right]=\E_x[H_x].
</math>
In case <math>(ii)</math>, <math>\nu_x</math> is infinite and thus
<math display="block">
\E_x[H_x]=\nu_x(E)=\infty.
</math>}}
==General references==
{{cite arXiv|last=Moshayedi|first=Nima|year=2020|title=Lectures on Probability Theory|eprint=2010.16280|class=math.PR}}
==Notes==
{{notelist}}

Revision as of 01:53, 8 May 2024

[math] \newcommand{\R}{\mathbb{R}} \newcommand{\A}{\mathcal{A}} \newcommand{\B}{\mathcal{B}} \newcommand{\N}{\mathbb{N}} \newcommand{\C}{\mathbb{C}} \newcommand{\Rbar}{\overline{\mathbb{R}}} \newcommand{\Bbar}{\overline{\mathcal{B}}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\E}{\mathbb{E}} \newcommand{\p}{\mathbb{P}} \newcommand{\one}{\mathds{1}} \newcommand{\0}{\mathcal{O}} \newcommand{\mat}{\textnormal{Mat}} \newcommand{\sign}{\textnormal{sign}} \newcommand{\CP}{\mathcal{P}} \newcommand{\CT}{\mathcal{T}} \newcommand{\CY}{\mathcal{Y}} \newcommand{\F}{\mathcal{F}} \newcommand{\mathds}{\mathbb}[/math]
Definition (Invariant measure)

Let [math]\mu[/math] be a positive measure on [math]E[/math] such that [math]\mu(x) \lt \infty[/math] for all [math]x\in E[/math] and [math]\mu\not\equiv 0[/math]. We say that [math]\mu[/math] is invariant for the transition matrix [math]Q[/math] if for all [math]y\in E[/math] we get

[[math]] \mu(y)=\sum_{x\in E}\mu(x)Q(x,y). [[/math]]
With matrix notation, this means

[[math]] \mu Q=\mu. [[/math]]
Since for all [math]n\in\N[/math], [math]Q_n=Q^n[/math], we have [math]\mu Q_n\mu=\mu[/math].

Interpretation

Assume that [math]\mu(E) \lt \infty[/math], which is always the case when [math]E[/math] is finite. We can assume that [math]\mu(E)=1[/math]. Then for all measurable maps [math]f:E\to\R_+[/math], we get that

[[math]] \E_\mu[f(X_1)]=\sum_{x\in E}\mu(x)\sum_{y\in E}Q(x,y)f(y)=\sum_{y\in E}f(y)\sum_{x\in E}\mu(x)Q(x,y)=\sum_{y\in E}\mu(y)f(y). [[/math]]

Hence under [math]\p_\mu[/math], we get that [math]X_1[/math] [math]{law}\atop{=}[/math] [math]X_0\sim \mu[/math]. Using the fact that [math]\mu Q_n=\mu[/math], we show that under [math]\p_\mu[/math], we get that [math]X_n\sim \mu[/math]. For all measurable maps [math]F:\Omega\to\R_+[/math] we have

[[math]] \E_\mu[F\circ \Theta_\one]=\E_\mu[\E_{X_1}[F]]=\sum_{x\in E}\mu(x)\E_x[F]=\E_\mu[F], [[/math]]

which implies that under [math]\p_\mu[/math], we get that [math](X_{1+n})_{n\geq 0}[/math] has the same law[a] as [math](X_n)_{n\geq 0}[/math].

Example


For the r.v. on [math]\mathbb{Z}^d[/math], we get [math]Q(x,y)=(y,x)[/math]. One then immediately checks that the counting measure on [math]\mathbb{Z}^d[/math] is invariant.

Definition (Reversible measure)

Let [math]\mu[/math] be positive measure on [math]E[/math] such that [math]\mu(x) \lt \infty[/math] for all [math]x\in E[/math]. [math]\mu[/math] is said to be reversible if for all [math]x,y\in E[/math] we get that

[[math]] \mu(x)Q(x,y)=\mu(y)Q(y,x). [[/math]]

Proposition

A reversible measure is invariant.


Show Proof

If [math]\mu[/math] is reversible, we get that

[[math]] \sum_{x\in E}\mu(x)Q(x,y)=\sum_{x\in E}\mu(y)Q(y,x)=\mu(y). [[/math]]

There exists invariant measures which are not reversible, for example the counting measure is not reversible if the [math]\mathcal{G}[/math] is not symmetric, i.e. [math]\mathcal{G}(x)=\mathcal{G}(-x)[/math].


Example

[Random walk on a graph]

The measure [math]\mu(x)=\vert A_x\vert[/math] is reversible. Indeed, if [math]\{x,y\}\in A[/math], we get

[[math]] \mu(x)Q(x,y)=\vert A_x\vert\frac{1}{\vert A_x\vert}=1=\mu(y)Q(y,x). [[/math]]


Example

[Ehrenfest's model] This is the Markov chain on [math]\{1,...,k\}[/math] with transition matrix


[[math]] \begin{cases}Q(j,j+1)=\frac{k-j}{k},& 0\leq j\leq k-1\\ Q(j,j-1)=\frac{j}{k},&1\leq j\leq k\end{cases} [[/math]]

A measure [math]\mu[/math] is reversible if and only if for [math]0\leq j\leq k-1[/math] we have

[[math]] \mu(j)\frac{k-j}{k}=\mu(j+1)\frac{j+1}{k}. [[/math]]

One can check that [math]\mu(j)=\binom{k}{j}[/math] is a solution.

Theorem

Let [math]x\in E[/math] be recurrent. The formula

[[math]] \mu(y)=\E_x\left[\sum_{k=0}^{H_x-1}\one_{\{ X_k=y\}}\right] [[/math]]

defines an invariant measure. Moreover, [math]\mu(y) \gt 0[/math] if and only if [math]y[/math] is in the same recurrence class as [math]x[/math].


Show Proof

Let us first note that if [math]y[/math] is not in the same recurrence class as [math]x[/math], then

[[math]] \E_x[N_y]=U(x,y)=0, [[/math]]
which implies that [math]\mu(y)=0[/math]. For [math]y\in E[/math], we get that

[[math]] \begin{multline*} \mu(y)=\E_x\left[\sum_{k=1}^{H_x}\one_{\{ X_k=y\}}\right]=\sum_{z\in E}\E_x\left[\sum_{k=1}^{H_x}\one_{\{ X_{k-1}=z,X_k=y\}}\right]=\sum_{z\in E}\sum_{k\geq 1}\E_x\left[\one_{\{k\leq H_x,X_{k-1}=z\}}\one_{\{ X_k=y\}}\right]\\=\sum_{z\in E}\sum_{k\geq 1}\E_x\left[\one_{\{k\leq H_x,X_{k-1}=z\}}\right]=\sum_{z\in E}\E_x\left[\sum_{k=1}^{H_x}\one_{X_{k-1}=z}\right]Q(z,y)=\sum_{z\in E}\mu(z)Q(z,y). \end{multline*} [[/math]]


We showed that [math]\mu Q=\mu[/math]. Thus, it follows that [math]\mu Q_n=\mu[/math] for all [math]n\geq 0[/math]. In particular, we get

[[math]] \mu(x)=1=\sum_{z\in E}\mu(z)Q_n(z,x). [[/math]]

Let [math]y[/math] be in the same recurrence class as [math]x[/math]. Then there exists some [math]n\geq 0[/math] such that [math]Q_n(y,x) \gt 0[/math], which implies that

[[math]] \mu(y) \lt \infty. [[/math]]
We can also find [math]m\geq 0[/math] such that [math]Q_m(x,y) \gt 0[/math] and

[[math]] \mu(y)=\sum_{z\in E}\mu(z)Q_m(z,y)\geq Q_m(x,x) \gt 0. [[/math]]

If there exists several recurrence classes [math]R_i[/math] with [math]i\in I[/math] for some index set [math]I[/math] and if we set

[[math]] \mu_i(y)=\E_{x_i}\left[\sum_{k=0}^{H_{x_i}-1}\one_{\{ X_k=y\}}\right], [[/math]]
we obtain a invariant measure with disjoint supports.

Theorem

Let us assume that the Markov chain is irreducible and recurrent. Then the invariant measure is unique up to a multiplicative constant.


Show Proof

Let [math]\mu[/math] be an invariant measure. We can show by induction that for [math]p\geq 0[/math] and for all [math]x,y\in E[/math], we get

[[math]] \mu(y)\geq \mu(x)\E_x\left[\sum_{k=0}^{p\land (H_x-1)}\one_{\{ X_k=y\}}\right].(\star) [[/math]]

First, if [math]x=y[/math], this is obvious. Let us thus suppose that [math]x\not=y[/math]. If [math]p=0[/math], the inequality is immediate. Let us assume [math](\star)[/math] holds for [math]p[/math]. Then


[[math]] \begin{align*} \mu(y)&=\sum_{z\in E}\mu(z)Q(z,y)\geq \mu(x)\sum_{z\in E}\E_x\left[\sum_{k=0}^{p\land (H_x-1)}\one_{\{ X_k=z\}}\right]Q(z,y)\\ &=\mu(x)\sum_{z\in E}\sum_{k=0}^p\E_x[\one_{\{ X_k=z,k\leq H_x-1\}}]Q(z,y)\\ &=\mu(x)\sum_{z\in E}\sum_{k=0}^p \E_x[\one_{\{ X_k=z,k\leq H_x-1\}}]\one_{\{ X_{k-1}=y\}}\\ &=\mu(x)\E_x\left[\sum_{k=0}^{p\land (H_x-1)}\one_{\{ X_{k-1}=y\}}\right]=\mu(x)\E_x\left[\sum_{k=1}^{(p+1)\land (H_x)}\one_{\{ X_k=y\}}\right]. \end{align*} [[/math]]


This establishes the result for [math]p+1[/math]. Now, if we let [math]p\to\infty[/math] in [math](\star)[/math], we get

[[math]] \mu(y)\geq \mu(x)\E_x\left[\sum_{k=0}^{H_x-1}\one_{\{X_k=y\}}\right]. [[/math]]
Let us fix [math]x\in E[/math]. The measure [math]\nu_x(y)=\E_x\left[\sum_{k=0}^{H_x-1}\one_{\{ X_k=y\}}\right][/math] is invariant and we have [math]\mu(y)\geq \mu(x)\nu_x(y)[/math]. Hence for all [math]n\geq 1[/math] we get

[[math]] \mu(x)=\sum_{z\in E}\mu(z)Q_n(z,x)\geq \sum_{x\in E}\mu(x)\nu_x(z)Q_n(z,x)=\mu(x)\nu_x(x)=\mu(x). [[/math]]

Therefore we get that [math]\mu(z)=\mu(x)=\nu_x(z)[/math] for all [math]z[/math] such that [math]Q_n(z,x) \gt 0[/math]. Since the chain is irreducible, there exists some [math]n\geq 0[/math] such that [math]Q_n(z,x) \gt 0[/math]. This implies finally that

[[math]] \mu(z)=\mu(x)\nu_x(z). [[/math]]

Corollary

Let us assume the chain is irreducible and recurrent. Then one of the following hold.

  • There exists an invariant probability measure [math]\mu[/math] and for [math]x\in E[/math] we have
    [[math]] \E_x[H_x]=\frac{1}{\mu(x)}. [[/math]]
  • All invariant measures have infinite total mass and for [math]x\in E[/math] we get
    [[math]] \E_x[H_x]=\infty. [[/math]]

In the first case, the basis is said to be positive recurrent and in the second case it is said to be negative recurrent.

If [math]E[/math] is finite, then only the first case can occur.


Show Proof

[Proof of Corollary] We know that in this situation all invariant measures are proportional. Hence they all have finite mass or infinite mass. For case [math](i)[/math], let [math]\mu[/math] be the invariant probability measure and let [math]x\in E[/math]. Moreover, let

[[math]] \nu_x(y)=\E_x\left[\sum_{k=0}^{H_x-1}\one_{\{ X_k=y\}}\right]. [[/math]]
Then for some [math]C \gt 0[/math] we get [math]\mu=C\nu[/math]. We can determine [math]C[/math] by

[[math]] 1=\mu(E)=C\nu_x(E), [[/math]]
which implies that [math]C=\frac{1}{\nu_x(E)}[/math] and thus

[[math]] \mu(x)=\frac{\nu_x(x)}{\nu_x(E)}=\frac{1}{\nu_x(E)}. [[/math]]

But on the other hand we have

[[math]] \nu_x(E)=\sum_{y\in E}\E_x\left[\sum_{k=0}^{H_x-1}\one_{\{ X_k=y\}}\right]=\E_x\left[\sum_{k=0}^{H_x-1}\left(\sum_{y\in E}\one_{\{ X_k=y\}}\right)\right]=\E_x[H_x]. [[/math]]

In case [math](ii)[/math], [math]\nu_x[/math] is infinite and thus

[[math]] \E_x[H_x]=\nu_x(E)=\infty. [[/math]]

General references

Moshayedi, Nima (2020). "Lectures on Probability Theory". arXiv:2010.16280 [math.PR].

Notes

  1. Same holds for [math](X_{k+n})_{n\geq 0}[/math] for all [math]k\geq 0[/math]